# 15-319 / 15-619 Cloud Computing

Recitation 12 November 12<sup>th</sup> 2019

### Overview

- Last week's reflection
  - Team Project Phase 2, Live Test
  - Quiz 10
- This week's schedule
  - Project 4.2
  - Quiz 11
  - Twitter Analytics: The Team Project
    - Phase 3
      - Managed Services

### Machine Learning in Production

• A typical end-to-end process for Machine Learning



### Machine Learning in Production

• A proliferation of tools on the Cloud



### ML on Managed Services

- Machine learning training on large datasets tend to be computationally intensive
- An increasingly affordable option for users without specialized IT infrastructure is to process ML workloads on the cloud with Managed Services like Google AI Platform.
- Benefits:
  - No need to provision and configure virtual machines
  - Horizontal and vertical scaling is possible
  - No need to write custom logic to orchestrate multiple workers and achieve parallel training
  - $\circ~$  Deploy your model to the cloud

### P4.2 - Taxi Fare Prediction Application

 Accepts speech queries to get the fare estimate to get from point to point (based on historical data), and returns the result as speech

> *I would like to get from Central Park Zoo to Grand Central Terminal*



Your expected fare from Central Park Zoo to Grand Central Terminal is \$29.69



### P4.2 - Overview of Tasks

- <u>Task 1</u>: Data Visualization and Feature Engineering
- <u>Task 2</u>: Training, hyperparam tuning, deploying your model using the Google AI Platform and serving queries.
- <u>Task 3</u>: Stitch together services into a pipeline to build a user-facing interface for fare predictions.
- <u>Bonus</u>:
  - Use Cloud Vision API to identify NYC landmarks
  - Use AutoML to train a custom model that accepts custom landmarks as input for prediction

# Task 1: Feature Engineering - Data Viz

- You are given a small training dataset containing historical data of fare prices in New York City.
- Steps to perform
  - Data exploration and visualization
  - Understand the data for Feature Engineering with regards to feature construction, data cleaning, etc.

### Task 1: Feature Engineering - Data Viz



### Task 1: Feature Engineering

- You are given a small training dataset containing historical data of fare prices in New York City
- Steps to perform
  - $\circ\,$  Clean data and remove outliers
    - Consider what you learned from the data visualization task
  - Extract or construct meaningful features that will improve performance over the baseline model (which uses raw features with no transformations)

### Task 1: Feature Engineering

- Feature engineering = transforming domain knowledge into better features
- Some ideas for feature engineering
  - Calculate distance from the geo-coordinates
  - Calculate distance to landmarks
  - $\circ\,$  What are good proxies for traffic conditions?



### Task 1: Feature Engineering

- Evaluating your model
  - Metric: Root Mean Squared Error (RMSE)
  - K-fold Cross Validation

■Used to assess the predictive performance of the

model outside the training sample on unseen data



Plot feature importance

# Task 2: Training, Tuning & Deploying

- Build a complete model with the training dataset.
  We will leverage Google AI Platform to perform model training.
- Deploy the trained model to AI Platform.
- Deploy a Flask application that accepts web requests and returns fare predictions
  - Transform raw features from web requests using the feature engineering solution developed in Task 1.
  - Make API calls to the model hosted on AI Platform
  - $\circ~$  Format and return a web response

# Task 2: Tuning with Google AI Platform

#### • Hyperparameter Tuning

- Parameters v/s. Hyperparameters
  - Parameters: internal, often not set by the practitioners
  - Hyperparameters: external, often set by the practitioners before training
    - Basically, configuration parameters that impact the training process
- Finding optimal hyperparameters with exhaustive Grid Search is expensive

# Task 2: Tuning with GCP HyperTune

- Black box optimization service (does not need access to the underlying model)
- Need to specify a config yaml file that describes which hyperparameters to tune
- Uses a method called Bayesian Optimization to efficiently search through different combinations of hyperparameters
- An example of a HyperTune configuration file: <u>hptuning config.yaml</u>

### Task 2: Deploying Model to AI Platform

- To get a full score in this task, you need to:
  - Enable HyperTune, add at least 3 additional parameters to tune, run the hypertuning job and create a model on Google AI Platform.
  - Deploy the fare prediction application to GAE that uses the model created above and serves web requests correctly.
  - The predictions should achieve a target accuracy, measured by RMSE.

# Task 3: ML Application Pipeline

• Build an end-to-end application pipeline to predict car fare requests using the following architecture.



## Task 3: ML Application Pipeline

- Your application will include multiple APIs
  - Functional APIs to be implemented
    - /predict Generate fare predictions for a JSON array of rides
    - /speechToText Convert WAV audio to text string
    - /textToSpeech Convert text string to WAV audio
    - /namedEntities Identify landmarks in a given sentence
    - /directions For two given NYC landmarks, determine the latitude / longitude for each pickup and drop off pair

# Task 3: ML Application Pipeline

Putting it together:

- /farePrediction Given a WAV audio ride request, determine the predicted fare
  - Response
    - { "predicted\_fare": "23.78", "entities": ["Charging Bull", "Carnegie Hall"], "text": "Your expected fare from Charging Bull to Carnegie Hall is \$23.78", "speech": <BASE64 ENCODED AUDIO> }
- General solution flow
  - Speech to text ride request (/speechToText)
  - Extract entities from text ride request (/namedEntities)
  - Get the coordinates of the pickup and drop off locations (/directions)
  - Query the AI Platform model to get the predicted fare (/predict)
  - Convert the text response to speech (/textToSpeech)

### Bonus: Landmark Recognition

- (5 points) Use Cloud Vision to identify NYC landmarks
- (5 points) Add unique destinations using AutoML

#### • /farePredictionVision

- Unlike /farePrediction, the ride request will not be sent as WAV audio
- The API will accept the source and destination as images of NYC landmarks
- Must query the Cloud Vision API and custom AutoML model to determine the landmark names
- Continue with the same request as **/farePrediction**

### **Bonus: Landmark Recognition**



















### **Bonus: Landmark Recognition**



















(G) ROBERT K. CHIN

### Hints

- Task 1: Feature transformation
  - The exact same feature transformations must be applied to the training and the test set
  - Cannot share code if stateful functions are used, for example:
    - get\_dummies()
    - df.qcut()
  - Store state like bin ranges and categorical values to apply the transformation consistently
  - Jupyter: command not found (use virtualenv)

### Hints

- Task 2: HyperTune
  - Read the XGBoost hyperparameter doc to understand which hyperparameters can help most.
  - You can change the number of workers for the AI Platform training job to parallelize the training process.
  - Learn to make good estimates for the cost for each run
    - Cost = Consumed ML Units \* \$0.49

### Issues to Consider

#### Overfitting

- RMSE on training data is much lower than test data
- You should not filter outliers just because it makes your cross validation scores look better, since some of these records may be representative of the patterns in the real world.
  - ■Students who do this may pass Task 1, but will fail Task 2.
  - ■You should make sure you have good features first, before trying to play around with filtering outliers.

# TEAM PROJECT Twitter Data Analytics



### Team Project Phase 2 Live Test Top Q1 Teams

| HeartInTheWork     | 48653.85 |
|--------------------|----------|
| Let'sDolt!         | 45176.35 |
| SleeplessCoders    | 45035.20 |
| TeamRocket         | 39800.38 |
| We Are Not Special | 38465.16 |

Q1H

| LiverExplosion            | 61178.44 |  |  |  |
|---------------------------|----------|--|--|--|
| Let'sDolt!                | 49342.10 |  |  |  |
| YJZ                       | 49142.40 |  |  |  |
| Invictus                  | 47239.21 |  |  |  |
| MakeTwitterGreatAg<br>ain | 47116.48 |  |  |  |
| Q1M                       |          |  |  |  |

Congrats to **Let'sDolt!** for top performance for both HBase and MySQL tests.



### Team Project Phase 2 Live Test Top Q2 Teams

| Tritter           | 11381.92 |  |  |
|-------------------|----------|--|--|
| LiverExplosion    | 11086.91 |  |  |
| CarnegieAnalytica | 9667.79  |  |  |
| YJZ               | 9498.33  |  |  |
| Team Rocket       | 7117.90  |  |  |

| YJZ                   | 27552.07 |
|-----------------------|----------|
| BareMetalAlchemist    | 23757.92 |
| CarnegieAnalytica     | 21597.64 |
| MakeTwitterGreatAgain | 20245.92 |
| Tritter               | 19962.12 |

Q2H

Q2M

Congrats to **Tritter, CarnegieAnalytica and YJZ** for top performance for both HBase and MySQL tests.



### Team Project Phase 2 Live Test Top Q3 Teams





### Team Project - Phase 3

- Use only <u>AWS managed services</u> for all queries.
- Development budget: \$100
  - Penalty for lavishness: >\$150
- Live test:
  - Per-hour-budget: \$1.28 (included in \$100)
- Perform ETL on your beloved GCP and Azure

# **Cloud Managed Services**

 Managed services remove the burden from having to operate the provisioned cloud infrastructure.

 Management of the tools such as monitoring, patching, security, backup are offered as part of the service.

### Team Project - Phase 3

- RPS targets have been changed  $\rightarrow$ 
  - Q1: 38000
  - Q2: 12000
  - Q3: 6000
- Teams should NOT use any EC2 VMs or EBS volumes.
- Rule of thumb:
  - If you see anything in EC2 dashboard, stop.
  - If you are doing sudo apt install mysql-server, stop.
- Teams should explore the managed services provided by AWS to come up with a solution.
- Teams are <u>required</u> to use Terraform (unless Terraform does not have support for your particular managed service)

### **Team Project General Hints**

- No EC2 VMs and EBS volumes in the live test!
  - Nonetheless, you can use those to do verification or comparison to the hosted service you built before in the development process.
- You can check the EC2 web console after launching the managed service to verify if the managed service is allowed
  - <u>Example 1</u>: Lambda is allowed since it there will be no EC2 instances visible in the web console while using.
  - Example 2: EMR is not allowed because there are master and slave machines in the web console.

### **Team Project General Hints**

- One option would be to split the services into web-tier and storage-tier and choose different managed services.
  - If so, the compatibility of these two services should be taken into account.
- Consider the different characteristics of queries to decide what kind of managed services to use.
- High performance/cost ratio is valued.
  - Try your best to achieve the highest possible ratio.



### Team Project Time Table

| Phase (and query due)                                   | Start                            | Deadlines                                                                                                                                                        | Code and Report Due                        |
|---------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Phase 1<br>• Q1, Q2                                     | Monday 10/07/2019<br>00:00:00 ET | Checkpoint 1, Report:<br>Sunday 10/13/2019<br>23:59:59 ET<br>Checkpoint 2, Q1: Sunday<br>10/20/2019 23:59:59 ET<br>Phase 1, Q2: Sunday<br>10/27/2019 23:59:59 ET | Phase 1: Tuesday<br>10/29/2019 23:59:59 ET |
| Phase 2<br>• Q1, Q2,Q3                                  | Monday 10/28/2019<br>00:00:00 ET | Sunday 11/10/2019<br>15:59:59 ET                                                                                                                                 |                                            |
| Phase 2 Live Test (Hbase<br>AND MySQL)<br>• Q1, Q2, Q3  | Sunday 11/10/2019<br>17:00:00 ET | Sunday 11/10/2019<br>23:59:59 ET                                                                                                                                 | Tuesday 11/12/2019<br>23:59:59 ET          |
| Phase 3<br>Q1, Q2, Q3<br>(Managed services)             | Monday 11/11/2019<br>00:00:00 ET | Sunday 11/24/2019<br>15:59:59 ET                                                                                                                                 |                                            |
| Phase 3 Live Test<br>• Q1, Q2, Q3<br>(Managed services) | Sunday 11/24/2019<br>17:00:00 ET | Sunday 11/24/2019<br>23:59:59 ET                                                                                                                                 | Tuesday 11/26/2019<br>23:59:59 ET 35       |

### **Upcoming Deadlines**

- Project 4.2: Machine Learning on the Cloud
  - Due Sunday, November 17, 2019, 11:59 PM ET
- Team Project : Phase 3
  - Live-test at: Sunday November 24, 2019 3:59 PM ET
  - Code and report due: Tuesday November 26, 2019 11:59
    PM ET

### **Questions?**