15-319 / 15-619 Cloud Computing

Recitation 1

Course Overview and Introduction September 1 and 3, 2020

http://www.cs.cmu.edu/~seth/15619-f20/

Outline

- What is the course about?
- What is an online course?
- Administrivia

So What is Cloud Computing?

Evolution of Computing

Cloud Computing is the transformation of " "IT from a product to a service

Evolution of Electricity

Innovation New Disruptive Technology

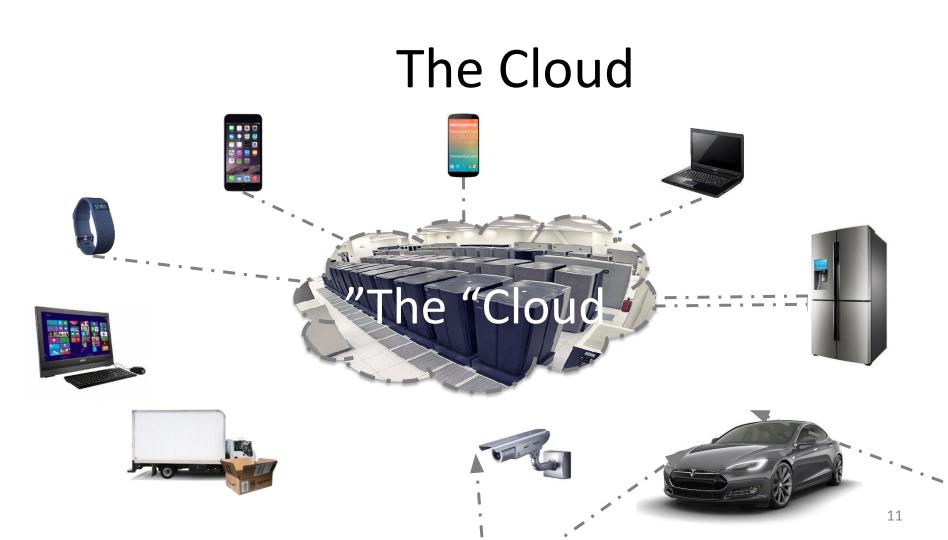
Product Buy and Maintain the Technology

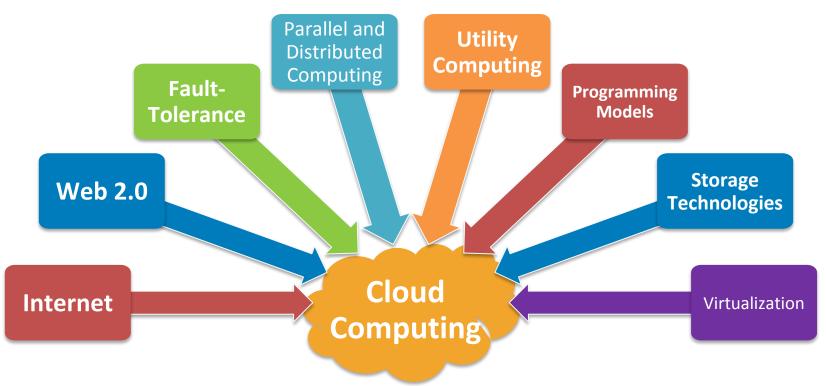
Service Electric Grid, pay for what you use

A Cloud is ...

 Datacenter hardware and software that the vendors use to offer the computing resources and services

Cloud-enabling Data Centers


- Large warehouse scale data centers
- Growing at a rapid rate
- Next is an example from Microsoft Azure
 - Azure US-East2 (Boydton, VA)
 - Azure Expansion 1
 - Azure Expansion 2



US-East2 (Boydton, VA)

US-East2 Hub Expansion

Enabled by Maturing Technologies

So... how would you transform information technology into a Service?

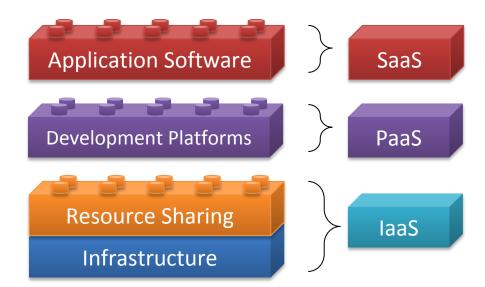
How to Transform IT to a Service?

- Connectivity
 - For moving data around
- Interactivity
 - Seamless interfaces
- Reliability
 - Failure will affect many
- Performance
 - Should not be slower
- Pay-as-you-Go
 - No upfront fee

- Ease of Programmability
 - Ease of development of complex services
- Manage Big Data
- Efficiency
 - Cost
 - Power
- Scalability & Elasticity
 - Flexible and rapid response to changing user needs

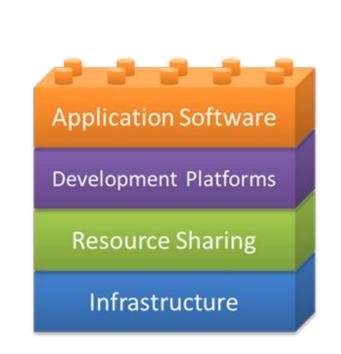
How to Transform IT to a Service?

- Connectivity Internet
- InteractiviWeb 2.0 – Seamless interfaces
- Reliability Fault-Tolerance
 Failure will affect many
- Parallel / Distributed
 - Should Systems
- Pay-as-you-Go
 Utility:Computing

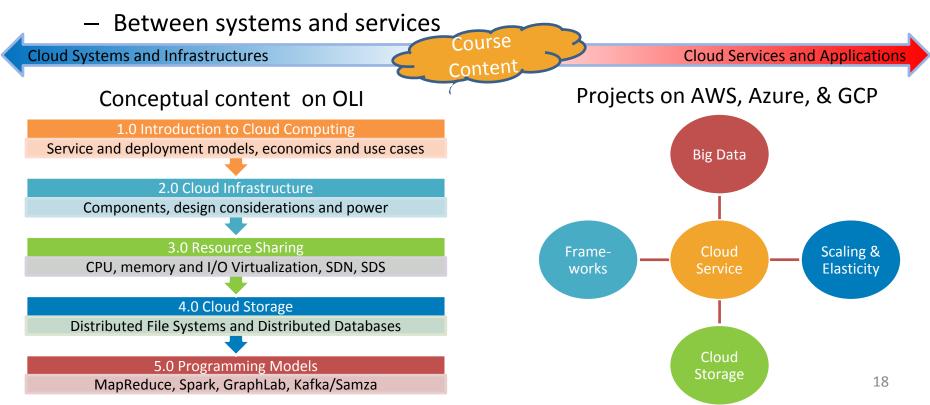

-Programmability -Programming Model

- Storage Technologies
- Efficiency
 - Virtualization and
 Resource Sharing
 FlexTechnologies

Cloud Building Blocks


Cloud services are available in various forms, corresponding to the layer of abstraction desired by the user

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (laaS)


Cloud Computing Stack

- Applications
- Development Platforms
- Elasticity
 - APIs to enable automation, Alarms, protocols, triggers, etc...
- Sharing mechanisms
 - Virtualization, Containers, ...
- Distributed systems
 - Programming models
 - Storage
- Data centers

What is this course about?

Applied aspects of cloud computing

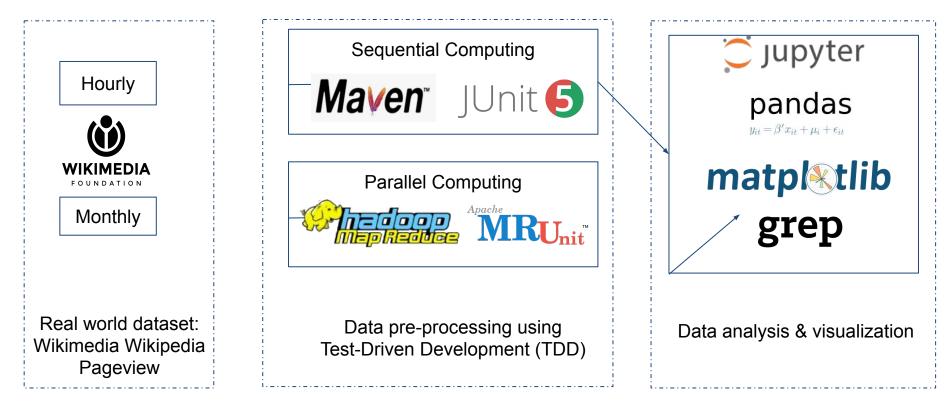
Course Goals

Students gain hands-on experience solving real world problems by completing projects in the areas of cloud **analytics**, **compute and elasticity**, **storage** and **frameworks**, which utilize existing public cloud tools and services. Students are exposed to real-world gate scenarios, infrastructure and budgets in order to learn how to:

- 1. Design, architect, implement, test, deploy, monitor and maint vin cloud-based applications;
- 2. Identify the appropriate tools and architectures to implement a cloud-based design;
- 3. Analyze the tradeoffs between difference ols and cloud offerings to meet real-world constraints;
- 4. Evaluate performance characterities of cloud-based services to implement optimizations;
- 5. [15-619 only] Collar prate with a team on an open-ended project to incrementally realize an <u>optimized</u> end-to-end cloud-based solution.

Conceptual Content on OLI

Unit #	Title	Modules and Description
1	Introduction	Definition and evolution of Cloud Computing Enabling Technologies Service and Deployment Models Popular Cloud Stacks and Use Cases Benefits, Risks, and Challenges of Cloud Comp ting Economic Models and SLAs Topics in Cloud Security
2	Cloud Infrastructures	Historical Perspective of Daily Configs Datacenter Components: IT Equipment and facilities Design Considerations: Requireants, Power, Efficiency, & Redundancy Power Datacipations and PUE Challong is in Voul Data Centers Cloud Manuscement and Software Deployment Considerations
3	Virtualization	Virtualization (CPU, Memory, I/O) Case Study: Amazon EC2 Software Defined Networks (SDN) Software Defined Storage (SDS)
4	Cloud Surage	Introduction to Storage Systems Cloud Storage Concepts Distributed File Systems (HDFS, Ceph FS) Cloud Databases (HBase, MongoDB, Cassandra, DynamoDB) Cloud Object Storage (Amazon S3, OpenStack Swift, Ceph) 20
6	Programming Models	Distributed Programming for the Cloud

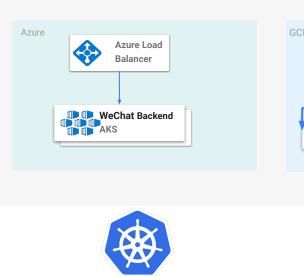

Projects on AWS/Azure/GCP Clouds

0. AWS/Azure/GCP Account Setup & Tool Primers	 Benchmarking VMs, SSH, Authentication, Billing, Security Groups, Vertical Scaling
1. Big Data Analytics	• Amazon EC2, Amazon EMR
2. Scaling, Elasticity and Failure	 Auto Scaling, Load Balancing, Monitoring, Docker Containers, Kubernetes, Functions
3. Cloud Storage	 MySQL, HBase, GCP Bigtable, GCP SQL DB, MongoDB
4. Analytics Engines for the Cloud	 Spark, DataBricks, Cloud ML Frameworks, Kafka/Samza
5. A Complete Web Service (Team project)	 No restrictions on tools or AWS services Evaluated based on cost and performance

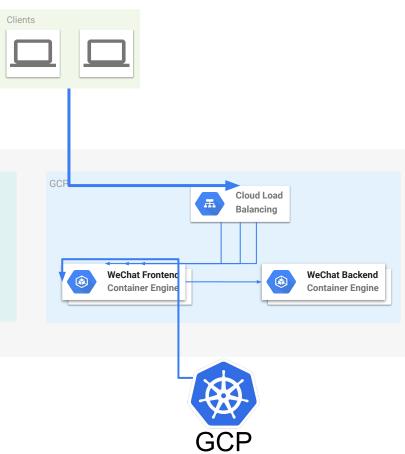
Project Learning Objectives


Data Analytics	 Analyze and visualize small and large data sets on the cloud using interactive computing as well as data manipulation and analysis libraries.
Compute & Elasticity	 Design, implement, test, package, deploy and monitor cloud application susing Vir. sal Machines (VMs), Containers and Serverless cloud computing services.
Cloud Storage	 Explore and experiment with different distributed cloud storage bstration. Compare their features, capabilities and applicability. Orchestrate, deploy and optimize a unified application have interacted encoded and NoSQL database systems. Implement and compare consistency rodels to record the tradeoff between consistency and performance in replication and uptributed doubt storage systems.
Frameworks	 6) Design, implement, test and debug applications sing in eractive, batch and stream processing frameworks and con, are their curvability to different problem domains. 7) Illustrate and e plain the electron workflow, overhead, fault-tolerance and logical flow of interactive batch and stream processing frameworks. 8) Train and dr, oy emach, elearning model using a cloud-based framework. 9) Ane rze and ic intitio totential sources of bottlenecks in programming frameworks to come its their processing.
T 'nject	 10) 15-61. only] Design, build, and deploy a performant, reliable, scalable and fault- i lerar. veb service on the cloud within a specified budget. 11 [15-019 only] Perform extract, transform and load (ETL) on a large data set. 12 ,15-619 only] Design schema as well as configure and optimize cloud-based databases to deal with scale and improve the throughput of a web service. 13) [15-619 only] Explore methods to identify the potential bottlenecks in a cloud-based web service and implement methods to improve system performance.
Overall	 14) Practice gathering, cleaning and preparing data for analysis on the cloud. 15) Practice Test-driven Development (TDD) in the software development process. 16) Orchestrate and automate the process of managing and provisioning cloud resources through machine-readable definition files. 17) Make informed decisions about choosing an appropriate cloud tool that will satisfy a set of specified requirements.

P1.1 and P1.2: Big Data Analytics

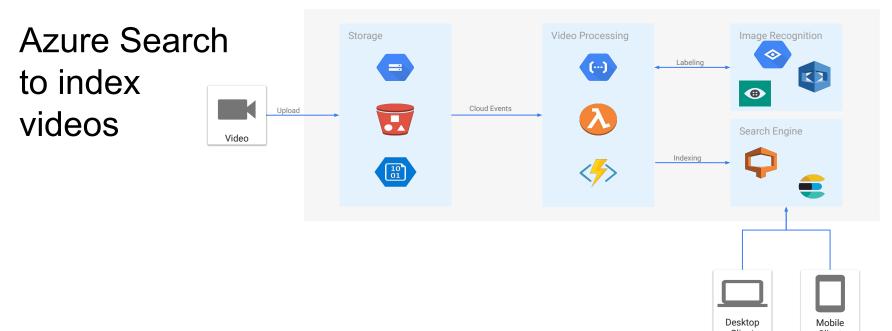

P2.1: VM Scaling, Elasticity & Failure

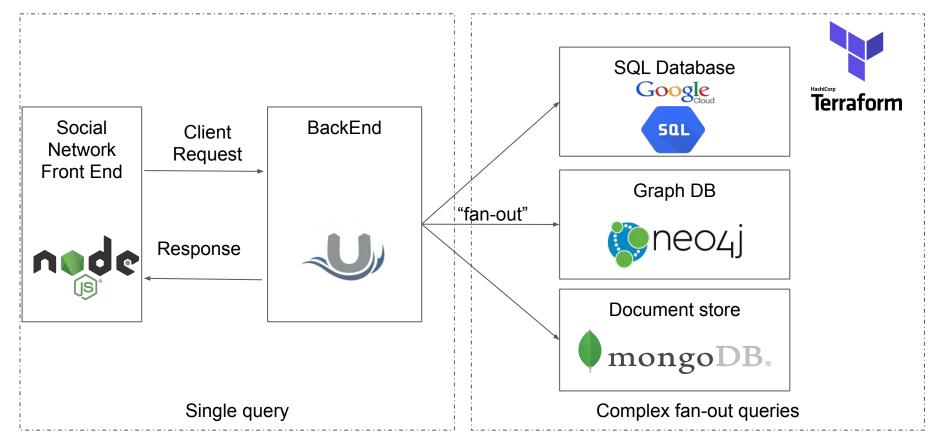
- Closed VMs
 - Load Generators
 - Dynamic load
 - Data Center Instances
 Performance & failure
- Scale out & scale in DCIs to achieve desired RPS within budget
 - Auto-scale groups, elastic load balancers, monitoring, etc.



P2.2: Containers and Kubernetes

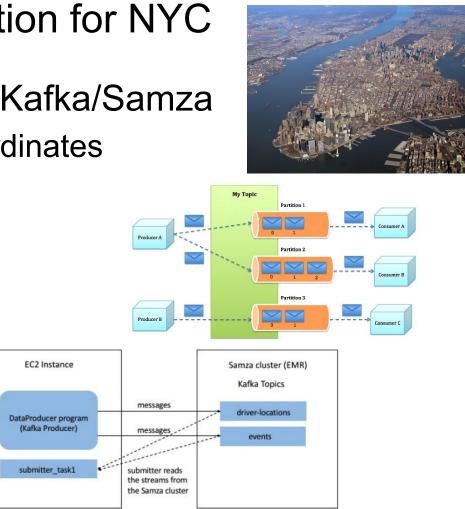
- Containerization
- Cluster Management
- Multi-Cloud
 Deployment


zure

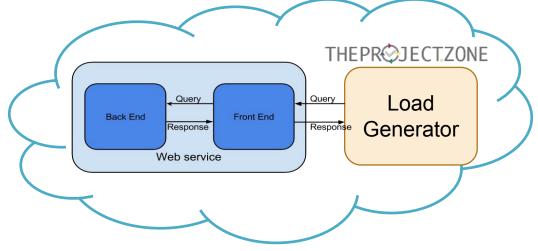

P2.3: Video Processing Pipeline - Serverless

- Functions and FFmpeg to process videos
- Use a cloud ML API for image labeling

•



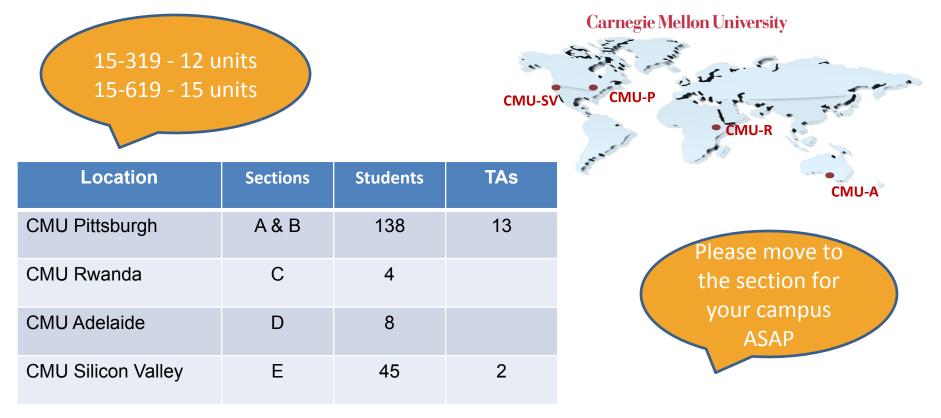
P3.2: Social Networking with Heterogeneous Backends


P4.3: Uber-like Application for NYC

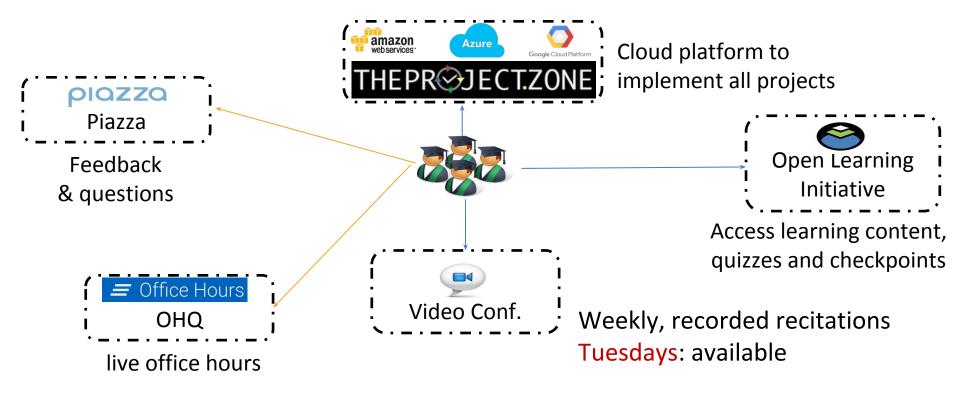
- Stream Processing with Kafka/Samza
 - Stream 1: Car GPS coordinates
 - Stream 2: Customers
- Task:
 - Match customers with cars to minimize travel time & other constraints

Team Project: Web Service

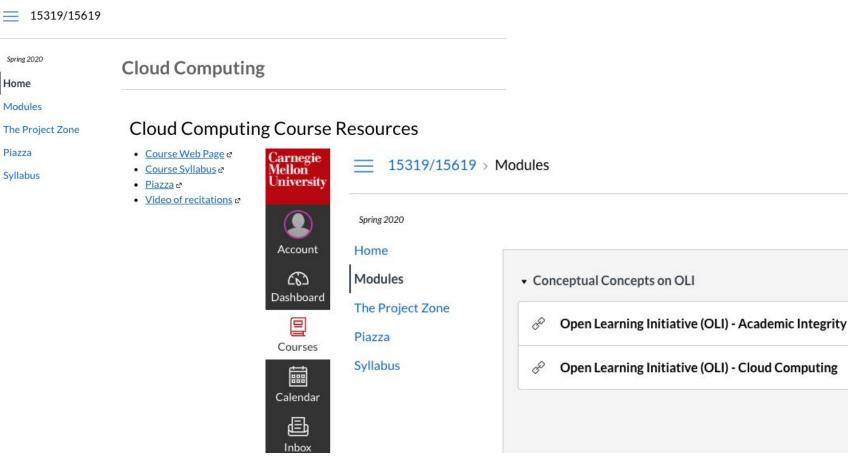
- Team-based
- 1.2 TB of raw data
- Specified queries
- Constraints
 - Correctness
 - Throughput
 - Budget
 - Time



Phases	Duration	Query Type
Phase 1	3 weeks	Q1, Q2
Phase 2	2 weeks	Q1, Q2, Q3
Phase 2 Live Test	6 hours	Q1, Q2, Q3, mix-Q1Q2Q3
Phase 3	2.5 weeks	Q1, Q2, Q3
Phase 3 Live Test	6 hours	Q1, Q2, Q3, MIX-Q1Q2Q3


Outline

- What is the course about?
- What is an online course?
- Administrivia


Carnegie Mellon Global Course

Online Course Engagement Model

Canvas

Carnegie Mellon University

 \bigcirc Account

Home

=

Spring 2020

Modules

Piazza

Syllabus

(2) Dashboard

Courses

Online Course Content - OLI

Conceptual content is on the Open Learning Initiative:

- Students are automatically registered
- Access to OLI is through Canvas
 - canvas.andrew.cmu.edu
- Check if Flash is installed
- Provide feedback on OLI
 - Bottom of each page
 - End of each module
- Do not copy or share content

	earning Initia			My Course Help	Settings
Syllabus: Cloud	Computing Co	urse - F20: Aug -	Dec 2020		
nstructors: seth goldstein (sethg@andrew.cmu.ed	<u>du),</u> Majd Sakr <u>(msakr@AN</u>	DREW.CMU.EDU)		
Syllabus	Roster	Gradebook	Unscored Activities	PDF Download	
Cloud Computing Assignment				Status	
Assignment				Status	
UNIT 1: Introduction to Cl	oud Computing				
Module 1: Cloud Co (Gradebook) (Learnin					
Module 2: Econom (Gradebook) (Learnin		allenges and Solutions			
Quiz 1: Introductio	n to Cloud Computing		Checkpoint	Available 9/11/20 12:0 Due 9/11/20 11:59 PM	
UNIT 2: Cloud Infrastructu	ire				
Module 3: Data Cer (Gradebook) (Learnin					
Module 4: Data Cer	nter Components				

TheProject.Zone

Course projects are on <u>https://TheProject.Zone</u>:

- Learn through repetitive attempts and feedback
- Students are automatically registered
- Access through browser
 - Not mobile friendly yet
- Work in progress
 - We will encounter bugs
 - Provide feedback on Piazza
 - Please be patient

<u>ۍ</u> - [F20 15-619 Cloud C	omputing	•				Sethg@andre
Schedu	le Dashboard	Conflicts	Users	Roles	Azure Subscriptions	Grades	

F20 15-619 Cloud Computing Graduate instance of the cloud computing course

Create New Project				
Primers Short tutorials on cloud-related topics		+	G	Û
Project 0 Exploring the cloud		.+	G	â
Module	Open time	Deadline		

Office Hours

- My Office hours on gather (Thur 1pm-3pm ET)
- TA Office hours by Zoom until Monday, then on gather.town
 15-619 Queue
 - See Piazza
 - Use <u>OHQ</u> 15-619

Happening now			
The queue is open .			
No students are on the queue.			
Ask a question		Торіс	
Ask a question	·	Topic What do you need help with?	
Ask a question	•		

Syllabus

- Updated on <u>webpage</u>
- Provides details on:
 - Course Objectives
 - Learning Outcomes
 - Policies
 - Grading
 - Tentative Schedule

15-319/15619: CLOUD COMPUTING

COURSE DESCRIPTION & SYLLABUS

CARNEGIE MELLON UNIVERSITY FAIL 2020

OVERVIEW

Title: Cloud Computing Units: 15-319 is 12 units and 15-619 is 15 units. Pre-requisites for undergraduate students: A "C" or better in 15-213. Pre-requisites for graduate students: Knowledge of computer systems, programming and debugging, with a strong competency in at least one language (such as Java/Python), and the ability to pick up other languages as needed.

OLI Course: http://oli.cmu.edu (accessed through https://canvas.cmu.edu/courses/18151) The Project Zone: https://TheProject.Zone/f20-15619 (accessed through https://canvas.cmu.edu/courses/18151) Piazza: https://piazza.com/cmu/fall2020/1531915619/home Webpage: http://www.cs.cmu.edu/~seth/15619-f20/

Recitation: Tuesdays (Videotaped)

Teaching Staff:

Prof. Seth Goldstein seth@cs.cmu.edu GHC 7111, +1-412-268-3828 Office hours: Thursday, 1-3pm (Pittsburgh)

The TA office hours are posted on Piazza:

- Abhinav Khare <akhare2@andrew.cmu.edu>
 - Angi Shen <angishen@andrew.cmu.edu>
- Chia-Kai Chang <chiakaic@andrew.cmu.edu>
- Marshall An <haokanga@andrew.cmu.edu>
- Hemang Manish Shah <hmanishs@andrew.cmu.edu>
 - Hongyi Zhang <hongyiz2@andrew.cmu.edu>
- Kabir Girish Soneja <ksoneja@andrew.cmu.edu>
- Mingxiao An <<u>mingxiaa@andrew.cmu.edu</u>>

- Pinak Sawhney <psawhney@andrew.cmu.edu>
- Pridhvi Vegesna <pvegesna@andrew.cmu.edu>
- Tom Chiu <shaohunc@andrew.cmu.edu>
- Siddharth Kandimalla <<u>skandima@andrew.cmu.edu</u>>
- Vishal Ramesh <vishalra@andrew.cmu.edu>
- Xinyi Tao <xinyit@andrew.cmu.edu>
- Yang Wang <vangwan3@andrew.cmu.edu>
- Yen-Shi Wang <<u>venshiw@andrew.cmu.edu</u>>

Tentative Schedule

- Schedules:
 - Quizzes on OLI
 - Projects on
 TheProject.Zone
- No extensions

Week	Monday	OLI Content	Individual Projects	Team Project	Quizzes
1	8/31/2020	Unit 1, Module 1, 2	Primers/P0 (Sep 06)		Q0 (Ac. Integ.)
2	09/07/2020	Unit 1, Module 1, 2	P1.1 (Sep 13)		Q1 (Sep 11)
3	09/14/2020	Unit 2, Module 3, 4	P1.2 (Sep 20)		Q2 (Sep 18)
4	09/21/2020	Unit 2, Module 5, 6	P2.1 (Sep 27)		Q3 (Sep 25)
5	09/28/2020	Unit 3, Module 7, 8, 9	P2.2 (Oct 04)		Q4 (Oct 02)
6	10/05/2020	Unit 3, Module 10, 11, 12	P2.3 (Oct 11)	P3.1 (Primer/Optional)	Q5 (Oct 09)
7	10/12/2020	Unit 3, Module 13	P3.2 (Oct 18)	Project Out (Oct 12)	Q6 (Oct 16)
8	10/19/2020	Unit 4, Module 14	P3.3 (Oct 25)		Q7 (Oct 22)
9	10/26/2020	Unit 4, Module 15, 16, 17		Phase 1 Due (Nov 01)	Q8 (Oct 30)
10	11/02/2020	Unit 4, Module 18	P4.1 (Nov 08)		Q9 (Nov 06)
11	11/09/2020	Unit 5, Module 19, 20		Phase 2 Due (Nov 15)	Q10 (Nov 13)
12	11/16/2020	Unit 5, Module 21, 22	P4.2 (Nov 22)		Q11 (Nov 20)
13	11/23/2020		Thanksgiving		
14	11/30/2020			Phase 3 Due (Dec 06)	
15	12/07/2020		P4.3 (Dec 11)		

Grading

Course Elements	#	Weight
Projects	4 or 5	80%
OLI Unit Checkpoint Quizzes	11	20%

- Projects weights
 - 15-319
 - 80 %, 10 individual project modules, each 8%
 - 15-619
 - 60%, 10 individual project modules, each 6%
 - 20%, 1 team project, three phases
- Weekly quizzes (11 in total)
 - 10 out of 11, 2% equal weight

Audit & Pass/Fail option is not available for this course

Outline

- What is the course about?
- What is an online course?
- Administrivia

Target Audience

- Technical Majors
- Undergraduate Juniors / Seniors
 - Pre-requisites:
 - 15213 Introduction to Computer Systems
- Graduate Students
 - Experience:
 - Unix, scripting, python, & java

Course Administration

- Students are automatically registered on OLI through canvas.cmu.edu
- A *single* Piazza course page is created
 We manually register students to Piazza
- Schedule of units and quizzes is on OLI

Content weekly quizzes are due on Fridays

Schedule of weekly projects is on TheProject.Zone
 Weekly project modules are due on Sundays

Public Cloud Infrastructure

- Paid Cloud Service
 - billed by the hour/minute
- Start a resource only when you need it
- To explore, use inexpensive instances

Google Cloud Platform

- Terminate all other resources as soon as you are done with them
- Students will be penalized for over usage
 - We have a fixed budget, do not abuse the resources!
 - − Intentional or unintentional abuse → grade penalties
 - Resources need to be tagged, otherwise \rightarrow penalties

This Week

- Check that you have been enrolled on Canvas and Piazza
- Academic Integrity Module on OLI
 - Monday, September 7, 2020
- Become familiar with conceptual content on OLI
 - Start reading Unit 1, Module 1 & Module 2
 - Quiz 1: Unit 1, Module 1 & 2, Friday, September 11, 2020
- Create an account on AWS, Azure and GCP (ASAP)
 - Submit your AWS account info using the link provided in the primers on TheProject.Zone
- Projects on TheProject.Zone
 - Primer and PO, due Sunday, September 6, 2020

Diverse Technical Preparation

- •Students come from diverse backgrounds and technical preparation
 - -We offer primers to get you started.
 - -If your programming skills are rusty, take the first two weeks to improve.
 - If you don't think you have the skills required, allocate more time each week for the projects.
 - -The first couple of weeks are less demanding, take advantage of them.

Perfect Conditions Do Not Exist

- Don't ask to be trained under perfect conditions
 - We will not provide a sanitized sandbox for you to learn
- You will encounter
 - Badly formed data, inaccurate documentation, intermittent services, insufficient information, etc.
 - Learn how to deal with all these issues
 - Very valuable experience for your career

Time Management is Key

- We are as good as what skills, and hard work we bring to the table.
- Don't ask for special circumstance due to drama.
 - Find out the source of the drama and make adjustments.

Academic Integrity

It is the responsibility of each student to produce her/his own original academic work.

- Individual work:
 - Weekly Project Modules
 - Unit Checkpoint Quizzes
- Team work:
 - 15-619 Project

Read the <u>university policy on Academic Integrity</u>.

Disciplinary Policies

- First offense:
 - Minimum: worse than not doing the work.
 - Maximum: immediate expulsion.

- Second offense results in expulsion. Always.
 - Previously undiscovered offenses can count as "first offense"!

The Penalties are Severe

 Cheating leads to several students being dismissed from the university every semester

LET IT NOT BE YOU!

Academic Integrity Module on OLI

- Required for all students
- Process
 - Pretest Quiz
 - Please take this without looking at the modules
 - Page 1, Overview
 - Page 2, Policies
 - Page 3, Methods of Prevention
 - Quiz
 - Complete this quiz this week
 - By September 7, 2020

Working within Budgets

- Design is a critical element to success
- Develop a budget for
 - Development
 - Testing
 - Drama
- If funds are left over in the budget, feel free to explore and learn!

Tagging is painful, why the penalty?

- Your boss has a budget and a boss
- The budget is allocated among the team
- Your boss has to keep track of how the resources are being spent in order to
 - Re-allocate budget or ask for more resources
- On the cloud, the only way to keep track is through tagging
 - Learn how to tag correctly, don't complain about penalties!

Getting Help

- TAs
- Piazza
 - Email does not scale
 - Discussion forum to support each other
- Recitations
 - Tuesdays (recorded)
 - Will be posted before Tuesday at Noon
- Office Hours
 - Check Piazza for Office Hour schedule
 - Will use OHQ and gather.town (starting 8/8) [links on piazza]

Teaching Staff

- Seth Copen Goldstein
 - <u>seth@cmu.edu</u>
 - Office Hours
 - Thursday 1-3pm ET
 - Gather.town link on piazza

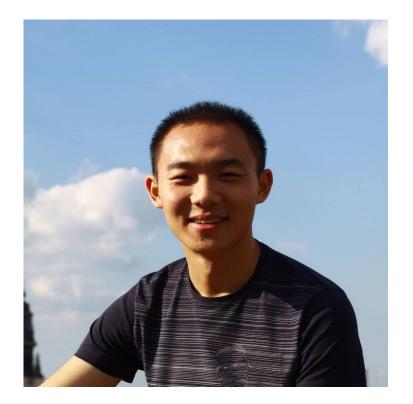
Marshall An

Project Scientist @ SCS

To maintain my serotonin level, there are only 2 ways: consume protein and work.

My biggest hobby is psychology.

Siddharth (Sid)


- Project Scientist @ SCS
- In my free time, I do stock trading. I love watching movies, gaming!

Adam Zhang

Data Scientist @ SCS B.S. Stats ML, 2019

Administrator for online code review.

Your Name

Photo

Program, graduation date favorite something

Yang Wang

Master in Information Networking, May 2021 Love skiing and snowshoeing, and traveling

Abhinav Khare

- M.S. in Computational Data Science (Dec 2020)
- Love traveling, switched to the new flight sim this pandemic \o/

Ninad Naik

- MISM Graduating Dec 2020
- Besides coding (and cloud) I like making pixel

Pridhvi Vegesna

- Undergraduate (BS Business Administration, Minor in Computer Science) May 2021
- Loves basketball and mindlessly browsing on reddit

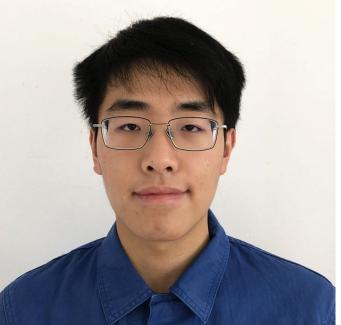
Zian Ke

M.S. Information Networking, May 2021 Love traveling (for concerts, museums, and soccer games)

Mingxiao An

- M.S. in Electrical and Computer Engineering, May 2021
- Love soccer

Kai Chang


- M.S. in Software Engineering, Dec 2020
- Cat lover

Xinyi Tao

M.S. Information Networking, May 2021 Love hiking

Pinak Sawhney

- M.S. in Electrical and Computer Engineering, Dec 2020
- Online Chess, Coding and binge watching TV shows

Tom Chiu

- M.S. in Electrical and Computer Engineering, Dec 2020
- Love watching sports.
 Cheer for Pittsburgh sports teams!

Yiqing Lu

M.S. in Information Networking, May 2021
Love Tennis

Yen-Shi Wang

- M.S. in Electrical and Computer Engineering, Dec 2020
- Playing the acoustic guitar, table tennis, and jogging

Hongyi Zhang

M.S. in Computational Data Science, Dec 2020 Love rhythm games :D

Hemang Shah

Master of Information Systems Management (MISM), December 2020 Love road trips and adventure sports (skydiving, bungee jumping, scuba diving). Wish to start pilot training as a hobby after

Kabir Soneja

Master of Information Systems Management (MISM), December 2020

I love swimming and traveling to unexplored places.

Vishal R

- Master of Information Systems Management (MISM), hopefully graduating in Dec 2020.
- Scared of heights, but want to skydive. Closest I have been to sky-diving is falling off my bed while I was asleep.

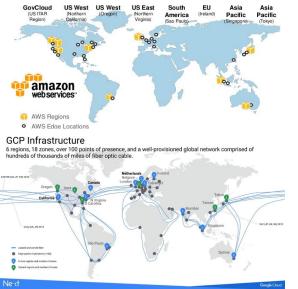
Anqi Shen

- M.S. in Electrical and Computer Engineering, Dec 2020
- Love volleyball and movies

Prathit Pannase

Master of Information Systems Management

Love watching movies, driving & recently shooting range



Era of Globalization

- Economics
- Communication
- Entertainment
- Sports
- Education
- Compute Services 🙄
 - You're programming the global computer.

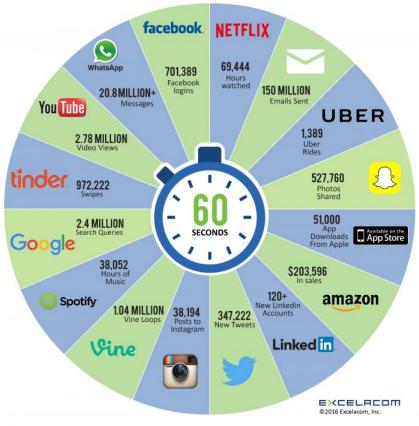
AWS Global Infrastructure

Questions?

Data and Decision Making

- Analyzing data reflects reality
- <u>Walmart</u>: hurricane warning
 - Stock beer and strawberry pop-tarts
 - 7x increase in sales during large storms
- <u>Government</u>: resource allocation decisions
 - − Data mining in Maryland → crime hotspots
 - Shuffle resource allocation, more to hotspots
 - violent crime down by 25%
 - \$20 million saved in the city of Baltimore

Data Science


- Data Science is the science of learning from data
- Employs statistical, machine learning and data mining techniques
 - Look for trends, patterns or anomalies in the data
- Affects research in many domains
 - Business, Economics and Finance
 - Biological Sciences and Bioinformatics
 - Social Sciences and Humanities

An Increase in Data Capture

- Physical Sensors and Sensor Networks
 - Environmental, safety, transportation
- Social Media Interactions
 - Facebook, Twitter, Instagram
- Public Video and Image Capture
 - Surveillance, mobile phones, ...
- Customer Spending Habits
 - Loyalty programs and purchase data

What happens in an **INTERNET MINUTE?**

What is Big Data?

- Big Data
 - Volume, Velocity, Variety, Veracity
 - Data of next year >> data of this year
- Many Challenges
 - Store, share, analyze, search, transfer, visualize, and secure

we need Large Scale **Systems**

Large Scale System Challenges

- Lengthy procurement cycles
- Lengthy deployment effort
- Costly power and cooling
- Costly systems administration
- Low utilization
- Costly disaster recovery

Software as a Service (SaaS)

- Software is delivered through the internet over a browser or mobile application
- Replace desktop software with cloud-based versions
- Webmail, Productivity Software, ERP, CRM etc.
- Centrally managed, globally available, automatically updated

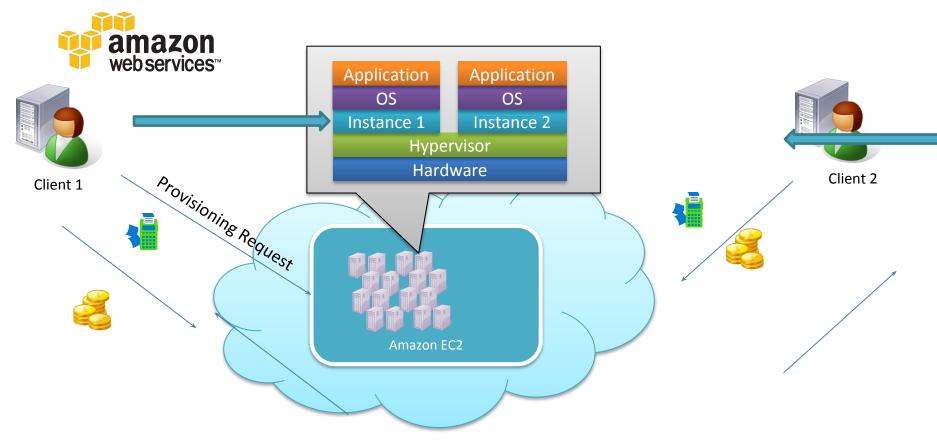
Adobe[®] Creative Cloud

Platform as a Service (PaaS)

- Tools and APIs to develop and deploy cloud-based applications
- Create customized SaaS in the form of Web or mobile applications

Infrastructure as a Service (laaS)

- Compute, storage and network resources bundled in the form of virtual machines
- Fully flexible in terms of software and environment



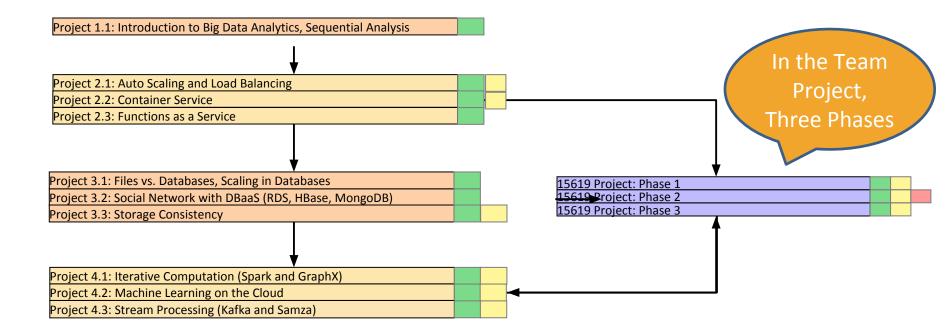
Infrastructure as a Service

Benefits of Cloud Computing

Risks and Challenges

Service Level Agreements and Objectives (SLA/SLO)

- SLA: Contract between cloud providers and users to define expected service
 - Service availability and delivery
 - Payment terms, bonuses and penalties for service
- SLO: Individual performance/service metrics regarding service delivery defined in the SLA
- Auditing: monitor resources to enforce SLOs and SLAs


Cloud Use Cases: Start-ups

- Infrastructure on demand
- Save money on data center real estate, servers, power and cooling
- Saving in capital expenditure which could be used to drive other areas of business growth
- Scale infrastructure as the business grows
- Levels the infrastructure playing field with established companies

Projects

- Four Individual Projects (all students):
 - 0. Primers and P0 (Due Sunday, September 02, 2018)
 - 1. Big Data Analytics
 - 2. Scalability, Elasticity and Failure
 - 3. Cloud Storage
 - 4. Analytics Engines for the Cloud
- One Team Project, Twitter Analytics Web Service (15-619 students)
 - One multi-week team project to build a complete web service

Projects: Timeline and Dependencies

Expectations

- Real world practical experience
 - Learn on your own
 - Languages, API, debugging
 - Overcome challenges
 - Deal with uncertainty
- Self paced learning
- Using experimental tools
 - Bleeding edge comes with risks

Amazon Web Services

- Paid Cloud Service billed by the hour
- Start a resource only when you need it
- To explore, use a micro instance
 - You can keep one micro instance running 24x7
- Terminate all other resources as soon as you are done with them
- Students will be penalized for over usage
 - We have a fixed budget, do not abuse the resources!
 - − Intentional or unintentional abuse → grade penalties
 - Resources need to be tagged, otherwise \rightarrow penalties

Azure Subscription

- Microsoft Azure provides the cloud computing course with one coupon per student
 - Students will provide an MSA on theproject.zone
 - We will create a subscription on Azure
- If you are careless in spending
 - Spending penalty
 - You will run out of money for a given project
 - Make a private Piazza post

GCP Coupon

- Google Cloud Platform provides the cloud computing course with one coupon per student
 - Students will access to a GCP coupon through theproject.zone
- If you are careless in spending
 - Spending penalty
 - You will run out of money for a given project
 - You will have to pay-as-you-go

Typical Reasons

- I didn't know that this would be considered an AIV at Carnegie Mellon.
- I started late, ran out of time, looked online to see if there are any solutions that will help me regain some time.
- I took too many demanding courses at the same time. I had no choice.

Outcomes of Committing an AIV

- Positives
 - It's a terrible way to learn an important lesson
- Negatives
 - Grade Penalty
 - Ranges from significant penalty to failure
 - Lose time and change plans since you have to retake course
 - Dismissal from program/university
 - Time, money and emotion
 - Job offers indicate
 - "Upon successful completion of your program"
 - Having to go home and tell everyone

What is Cheating

- Sharing code or other electronic files either by copying, retyping, looking at, or supplying a copy of any file.
 - Other students, github, stackoverflow, anywhere on the internet,...
- Copying answers to any checkpoint quiz from another individual, published or unpublished written sources, and electronic sources.
- Collaborating with another student or another individual on Unit Checkpoint Quizzes or Project Modules.
- Sharing written work, looking at, copying, or supplying work from another individual, published or unpublished written sources, and electronic sources.
- Collaboration in team projects is strictly limited to the members of the team.
- ...(read the syllabus and the university policy)

Minimum Cheating Penalty

- Must be worse than not submitting anything
 - Example impact of a -100% penalty on a project

	Perfect Score	Not submitting	Cheating
Assessment #1	20%	20%	20%
Assessment #2	20%	20%	20%
Assessment #3	20%	20%	20%
Assessment #4	20%	20%	20%
Assessment #5	20%	0%	-20%
Total	100%	80%	60%

- Typical penalty, "R" in the course

... for a more complete definition!

Cloud Computing is the delivery of computing as a **service** rather than a **product**,

whereby shared resources, software, and information are provided to computers and other devices,

as a **metered service** over a **network.**

Hands-on Skill Building Course

- Experience with
 - Elasticity, scalability, monitoring, load balancing
 - Cloud storage (HDFS, SQL, NoSQL, etc.)
 - Frameworks (MapReduce, Spark, Kafka/Samza)
 - Latest cloud services (AWS, Azure and GCP)
- Real world

data, projects, infrastructure within a budget

What this course is not about

• Building Cloud Stack Modules

OpenStack

- Cloud Software Development
 - SaaS software engineering
- Distributed Systems
 - Synchronization, Consistency, ...
- Operating Systems
 - Developing a hypervisor
- Networks
 - Routing and switching protocols

Skill training to help with your goals

- Student has goals
 - Internship, job, graduate school, research project
- Student hires Carnegie Mellon to help achieve goals
- Student and Carnegie Mellon are partners in Learning effectively
- But, how do we learn?

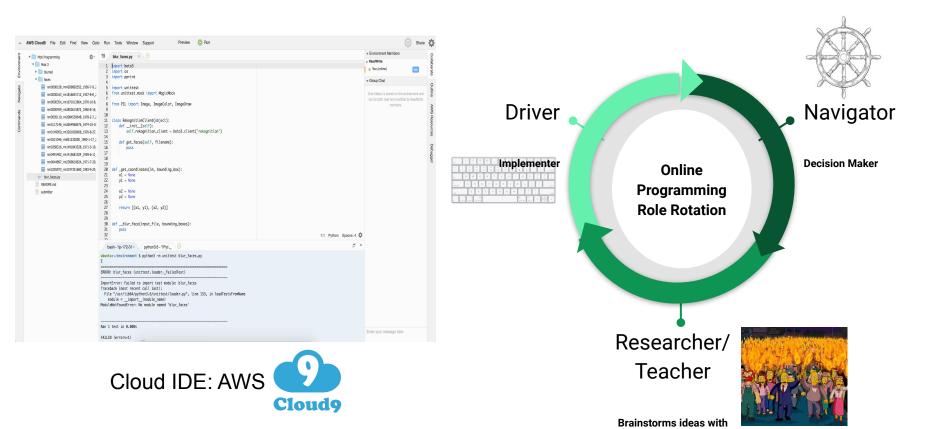
Deeper Processing Leads to Deeper Learning

- Studying a lot
 - You will forget it soon
- Infrequent testing
 - You will still forget most of it soon
- Frequent testing
 - Helps improve retention a great deal
- Project work using/exploring/attempting to solve a problem
 - Helps even more

The deeper you think, the more you practice, the more you will learn and retain.

Working on Projects

- Understand the context and tasks/problem
- Choose a path towards a solution
- Attempt the path
- Face obstacles
 - Ask for help?
 - Look for another path on Stackoverflow and try?
 - Choose another path?
 - Find the reason behind the obstacle?
- Which is the hardest?


Performance versus Mastery

- If you have high performance but low mastery
 →Means high grades but low skills & confidence
 →Get an interview but will not pass
- The grades will not get you the job

Companies care about what you know and what you can do

- When you have high mastery, you will be in very high demand
 - Seek mastery!

Participate in Online Programming Exercise Sessions

