
15-319 / 15-619
Cloud Computing

Recitation 3

September 15th, 2020

Agenda

● Logistics update
● Reflection from last week
● OLI content
● MapReduce programming model
● P1.2 tasks overview
● P1.2 grading

2

Update on Office Hours Logistics

● We would like to introduce a new
way to hold the Office Hours, which
can be more interactive and similar
to the real-world scenario.

● All the office hours starting from last
week will be held on Gather
(gather.town)

3

Important Notice

● DO NOT EXPOSE YOUR AWS CREDENTIALS!
● DO NOT EXPOSE YOUR GCP CREDENTIALS!
● DO NOT EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl
○ Github
○ Bitbucket
○ Anywhere public…

● -100% penalty if you expose any of your credentials

4

Reflection

● Conceptual content on OLI
○ Modules 1, 2, Quiz 1

● Project theme - Sequential Analysis
○ Wiki Data Processing Task

■ Sequential Analysis of 100s MB of wikipedia data, adopt Test
Driven Development (TDD)

○ Data Analytics Task
■ Write analytics code on Jupyter Notebook using the pandas

library
○ Identify the limitations of sequential programs

5

Guideline for Project Reflection

● Describe your approach in solving each task in this project
○ Please share your

■ approach, challenges faced, how you overcame issues, and
lessons learned

■ If you came up with a novel solution!
● However, please:

○ Do not share your code or pseudocode
○ Do not share details about your solution

6

● Quiz 2 (OLI Modules 3 & 4)
○ Due on Friday, Sept. 18th, 2020, 11:59 PM ET

● Project 1.2
○ Due on Sunday, Sept. 20th, 2020, 11:59 PM ET

● Project 1.1 Reflection Feedback (graded)
○ Due on Sunday, Sept. 20th, 2020, 11:59 PM ET

7

This week

Module 3: Data Center Trends

● Definition & Origins
○ Infrastructure dedicated to housing computer and networking

equipment, including power, cooling, and networking
● Growth

○ Size (No. of racks and cabinets)
○ Density

● Efficiency
○ Servers
○ Server Components
○ Power
○ Cooling

8

Facebook data center

● IT Equipment
○ Servers : rack-mounted

■ Motherboard
■ Expansion cards

○ Type of Storage
■ Direct attached storage (DAS)
■ Storage area network (SAN)
■ Network attached storage (NAS)

○ Networking
■ Ethernet, protocols, etc.

● Facilities
○ Server room
○ Power (distribution)
○ Cooling

Module 4: Data Center Components

9

Project 1

● Identify Trending Topics on Wikipedia
○ Use the hourly pageviews dataset.

● Project 1.1: (Last Week)
○ Find trends from a single hour of data.

● Project 1.2: (This Week)
○ Find trends with a 30-day dataset using MapReduce.

■ Data collected from March 8th to April 6th in 2018.

10

Limitations of sequential programs

● Your data-preprocessing program might work well with an hourly
dataset, but will fall short to process a large dataset
○ Might take too long
○ Might run out of resources

● Methods to process a large dataset
○ Sequential program might not scale ⇒ a parallel solution
○ A single EC2 machine might not have adequate memory and

computational capabilities either ⇒ a large distributed cluster
● Challenges to overcome for your program to work in a distributed

system
○ How would you partition and distribute the tasks and data?
○ How would the nodes communicate and collaborate?
○ What if a node fails?

11

The MapReduce programming model

● The MapReduce programming model simplifies parallel processing by
abstracting away the complexities involved in working with distributed
systems
○ Data partition and distribution
○ Management of communication across nodes
○ Deal with unreliable hardware and software

12

The MapReduce programming model

● Handling failure gracefully
○ Failure of a single machine will not cause the failure of the whole

job
○ A task failure on one node can be resolved by rerunning the task

on other nodes
● Reduce the communication cost

○ Data is stored in a distributed manner with replication
○ Exploiting data locality

● Easy to program
○ The minimal code you need to implement is only the map and

reduce functions

13

Overview of MapReduce

● Map: Process the input data in chunks and in parallel
● Shuffle and sort
● Reduce: Aggregate or summarize intermediate data in parallel and

output the result

14

The Map phase in MapReduce

● Map map(k1,v1) --> list(k2,v2)
○ Map function takes input as Key-Value pairs k1,v1.
○ The map function produces zero or more output Key-Value pairs

for one input pair. list(k2,v2)

15

The Map Phase and Intermediate Data

● Map
○ map(k1,v1) --> list(k2,v2)

● If the input is a file, the input Key-Value pair could represent a line in
the file
○ keys are the position in the file
○ values are the text of the line

● k2,v2 is called “intermediate key-value pair” because it is
○ the output of the Mapper
○ the input of the Reducer

16

Word Count Example

● Input ⇒ Word Count ⇒ output
● Content of one or more input files:

○ cat cow
○ duck
○ dog cat
○ cat

● Output:
○ cat, 3
○ cow, 1
○ dog, 1
○ duck, 1

17

Map in Word Count

● Map in the Word Count Example

18

Input:
file1.txt

cat cow

duck

dog cat

k1,v1 pairs:

(pos, “cat cow”)
(pos, “duck”)
(pos, “dog cat”)

Mapper1

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

Input:
file2.txt

cat

k1,v1 pairs:

(pos, “cat”)
Mapper2

k2,v2 pairs:

(cat, 1)

Input:
file1.txt

cat cow

duck

dog cat

Map in Word Count

• Map in the Word Count Example

k1,v1 pairs:

(pos, “cat cow”)
(pos, “duck”)
(pos, “dog cat”)

Mapper1

k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

Input:
file2.txt

cat

k1,v1 pairs:

(pos, “cat”)
Mapper2

k2,v2 pairs:

(cat, 1)

19

The Shuffle and Sort in MapReduce

● Shuffle: transfers data from the mappers to the reducers
● Sort: sort intermediate key-value pair by key

20

Shuffle and sort in the Word Count Example

21

Reducer2

Reducer1k2,v2 pairs:

(cat, 1)
(cow, 1)
(duck, 1)
(dog, 1)
(cat, 1)

(cat, 1)

(cat, 1)
(cow, 1)
(cat, 1)
(cat, 1)

ShufflePartition

(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

(duck, 1)
(dog, 1)

Sort

reduce()

reduce()

reduce()
reduce()

The Reduce Phase in MapReduce

● Reduce:
○ reduce(k2, list(v2)) --> list(v3)

● The reduce function is called once for each unique key emitted from
the Mapper.

● The Reducer has an iterator for all values for each key.
● Produce the output to the directory defined by the MapReduce job.

22

The Reduce Phase
in MapReduce

● Reduce:
○ reduce(k2, list(v2)) --> list(v3)

● The reduce function is called once for each unique
key emitted from the Mapper.

● The Reducer has an iterator for all values for each
key.

● Produce the output to the directory defined by the
MapReduce job.

23

Reduce in the Word Count Example

24

Reducer2

Reducer1
(cat, list(1,1,1))

(cow, list(1))

(dog, list(1))
(duck, list(1))

reduce()

reduce()

reduce()
reduce()

(cat, 3)

(cow, 1)

(dog, 1)
(duck,1)

MapReduce In a Nutshell
● MapReduce incorporates two phases

○ Map Phase
○ Reduce phase

Map
Task

Map
Task

Map
Task

Map
Task

Reduce
Task

Reduce
Task

Reduce
Task

Partition

Partition
Partition

Partition

Partition
Partition Partition
Partition

Partition

To
HDFS

Dataset

HDFS

HDFS BLK

HDFS BLK

HDFS BLK

HDFS BLK

Map Phase
Shuffle Stage

Merge &
 Sort
Stage Reduce Stage

Reduce Phase

Partition

Split 0

Split 1

Split 2

Split 3

Partition

Partition

Partition

Partition

Partition

Partition

Partition

25

How about Combiner?

● To be able to run a combiner function at the end of the map task, the
reduce function needs to be:
○ Commutative
○ Associative

● You are not required to use a combiner to complete any task in this
project

● You can use the combiner if you think it is needed
● Hint: However, do not misuse a combiner

26

Parallelism in MapReduce

● Mappers run in parallel, processing different input splits and creating
intermediate Key-Value pairs

● Reducers also run in parallel, each working on a set of keys based on
the partitioning function
○ By default, the partitioning function is a hash function

● Although the shuffle can start early, however, the reduce function
cannot start until all mappers finish and all intermediate data is
shuffled

27

MRUnit: TDD for MapReduce

● MRUnit is a unit test framework for MapReduce
● Allows you to define your input and expected output for the map and

reduce functions
● This will allow you to test your map and reduce functions

28

TEST LOCALLY!
TEST SMALL!

Using MRUnit

● Tests supported
○ Map Test to test map()
○ Reduce Test to test reduce()
○ MapReduce Test to test both

● Steps to create Map Test
○ Step 1: Create your Mapper
○ Step 2: Create map test using MRUnit
○ Step 3: Set the input and output records
○ Step 4: Implement your map function
○ Step 5: Run locally to evaluate the test

29

MRUnit: Example map() test

30

// The test code is under the test source folder, similar to
JUnit 5 test code

// run “mvn test” to run the test

public class WordCountMapTest extends TestCase {

 @Test

 public void testWordCountMapper() throws IOException {

 driver.withInput(new Text(""), new Text("cat cat dog"))

 .withOutput(new Text("cat"), new VIntWritable(1))

 .withOutput(new Text("cat"), new VIntWritable(1))

 .withOutput(new Text("dog"), new VIntWritable(1))

 .runTest(false);

 }
}

Test the MR workflow

● Use LocalJobRunner to test the MR jobs
○ Runs the MapReduce workflow in memory locally

● Steps to follow:
○ Define the configurations similar to the configurations of a real

MapReduce job
■ Input path, output path
■ Mapper class, reducer class
■ etc.

○ Test if the job can be successful

31

TEST LOCALLY!
TEST SMALL!

Troubleshooting EMR and MapReduce

● As you run the jobs with the large dataset, you can still run into errors
despite the tests because of:
○ Resource limit, e.g., OutOfMemory
○ Malformed input data

● Aggregate the distributed log chunks into a single file will enable you
to search all logs at once

● To retrieve the aggregated logs, run the following command on the
master node

yarn logs -applicationId <applicationId>

● The first 3 questions in runner.sh will help you practice how to use
grep to search the log files

32

Visit the YARN UI without opening unsafe ports to
the public

● In the previous offerings of our course, students' Hadoop clusters
were compromised and implicated in DDOS attacks.

● Follow the instructions in "Visit the YARN UI without opening unsafe
ports to the public" in the writeup.

● Do not expose the port 8088 to the public.
● Otherwise, your Hadoop cluster will be vulnerable to a security exploit

that may easily make you exceed the project budget due to heavy
malicious egress data traffic and you will incur a 100% penalty.

● This applies to any Hadoop cluster, for example, EMR, GCP
Dataproc, etc.

33

Task 1: Inverted Index in MapReduce

● An index maps the words to the file where they occur.

34

Input:
file1.txt
cat cow
duck
dog cat

Input:
file2.txt
cat dog

Output:

cat
(file1.txt,file2.
txt)
cow (file1.txt)
dog
(file1.txt,file2.
txt)
duck(file1.txt)

Your Task

Implement Inverted Index with MapReduce using TDD

● A worked example of WordCount and the test cases are provided for
you to learn from

● We provide you with the test cases for Inverted Index
○ to test the implementation of map and reduce functions
○ to test if the MapReduce application can run successfully w/

LocalJobRunner on a local dataset
● Your task is to pass the test cases
● If you can pass the test cases, the LocalJobRunner will generate the

output to a local path

35

Running a Hadoop MR Job from the Command Line

● Create a cluster as per the AWS EMR section
○ provision via Terraform
○ SSH into the master node

● Run the MapReduce job in hadoop

> yarn jar project1.jar
edu.cmu.scs.cc.project1.WordCount input-path
output-path

36

Task 2: Wikipedia MapReduce application

● Put what you have learned together
● Design and implement a MapReduce application to:

○ Filter out records based on the filtering rules in the data filtering
task. Reuse your code.

○ Get the input filename from within a Mapper
○ Aggregate the pageviews from hourly views to daily views
○ Calculate the total pageviews for each article
○ Print the popular article that has over 100,000 page-views

(100,000 excluded)

37

Task 3: Data Analysis with Pandas

● Now that you have filtered and aggregated the monthly data, you are
ready to analyze the data to answer some interesting analytics
questions.

38

Project 1.2 Workflow

● Launch an EC2 instance with a specified AMI
● Provision EMR cluster(s) and finish tasks:

○ Inverted Index in MapReduce
○ Wikipedia MapReduce
○ Do not expose port 8088 to the public.

● Complete and run the script
○ /home/clouduser/Project1/runner.sh
○ Answer a set of questions by providing the code inside

data_analysis.ipynb
● Submit your code for grading

○ Complete the references file in JSON format
○ Execute submitter to submit your code

● Finish Project Reflection (graded) before the deadline

39

Grading of Your Projects

40

● Code submissions are auto-graded
● We will grade all the code (both auto and

manually)
● We auto grade your coding style, which is worth

5 points
● Coding style will also be manually graded

○ high quality code
○ sufficient comments
○ self-explanatory and modularized code

● We will also test the quality and coverage of the
MRUTests you write
○ If your tests are really good, there are

bonuses.

Reminder: Deadlines

41

● Quiz 2 (OLI Modules 3 & 4)
○ Due on Friday, Sept. 18th, 2020, 11:59 PM ET

● Project 1.2
○ Due on Sunday, Sept. 20th, 2020, 11:59 PM ET

● Project 1.1 Reflection Feedback (graded)
○ Due on Sunday, Sept. 20th, 2020, 11:59 PM ET

Please start early!

Let’s avoid this on the weekend

42

Best wishes. You got this!

43

