15-319 / 15-619
Cloud Computing

Recitation 4
September 22, 2020

Administrative - OH & Piazza

e Make use of office hours

O O O O

Clearly describe the problem, provide full context!

Piazza Course Staff
Google calendar in ET
Google calendar in PT

® Suggestions for using Piazza

©)

O O O O

Read Piazza Post Guidelines (@6) before asking questions

Read Piazza questions & answers carefully to avoid duplicates
Name the subject properly so that others can find your post

Try to ask a public question if possible so others can also benefit
Don’t ask a public question about a quiz question

https://piazza.com/cmu/fall2020/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://piazza.com/class/kckujccg5497i0?cid=6

Administrative - Cloud spending

o Monitor AWS expenses regularly
o Always do the cost calculation before launching services
o Keep in mind that: 6-hour delay for AWS to update their logs on

spending

m Accurate and timely expense reports are hard

e The cost logs every 6 hours may be inaccurate
m An item may take days before it is reported in the logs
m By the end of the billing cycle, the CSPs corrects the logs

Administrative - Cloud spending cont.

o Terminate your instances when not in use
o Stopped instances have EBS costs (50.1/GB-Month)
o Make sure spot instances are tagged right after launch

o Working within the specified budget is a very important skill to learn

Important - Compromised Accounts

e DON’T EVER EXPOSE YOUR AWS CREDENTIALS!
o Github
o Bitbucket
o Anywhere public...
e DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
e DON’T EVER EXPOSE YOUR Azure CREDENTIALS!
o Applicationld, ApplicationKey
o StorageAccountKey, EndpointUrl

Reflection

e Conceptual content on OLI
o Modules 3, 4, Quiz 2
® Project theme - Big data analytics
o Inverted Index: Built an inverted index with MapReduce using TDD
o Wiki Data Parallel Processing Analysis: Use MapReduce to process
36GB compressed / 128GB uncompressed wiki data
m MapReduce application to filter records and calculate aggregate
daily pageviews
o Data Analytics: Use Jupyter Notebooks and the pandas library to
analyze the data and answer questions

This Week

e Quiz 3 (OLI Modules 5 & 6)

o Due on Friday, September 25th, 2020, 11:59PM ET
® Project 2.1 and Reflection

o Due on Sunday, September 27th, 2020, 11:59PM ET
e Project 1.2 Discussion

o Due on Sunday, September 27th, 2020, 11:59PM ET
e P1.2 Code Review

o Due on Wednesday, September 30th, 2020, 11:59PM ET
® Primers released this week

o P2.2 - Intro to Containers and Docker

o P2.2 - Kubernetes and Container Orchestration

© Online Programming Exercises

Code Review

e Code review is the systematic examination of source code.

o Goal 1: Expose you to code review - making sure code achieves its objective
using a sound approach (readability, safe, etc)

o Goal 2: Expose you to alternative approaches

o Goal 3: Have you develop good coding habits and skills that will be useful for
your careers.

® For Project 1.2, completing code review is worth 5 points, and it will contribute
toward the total grade of Project 1.2.

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning,
monitoring and metering of virtual user “resources” on
top of the Cloud Service Provider’s (CSP) infrastructure.

Cloud middleware

Provisioning

Metering

Orchestration and automation

Case Study: Openstack - Open-source cloud stack implementation

OLI Module 6 - Cloud Software
Deployment Considerations

® Programming on the cloud

e Deploying applications on the cloud

O

O O O O

Build fault-tolerant cloud services
Load balancing

Scaling resources

Dealing with tail latency
Economics for cloud applications

Project 2
Overview

Scaling and Elasticity with
® VMs
e C(Containers
® Functions

2.1 Scaling Virtual Machines
Horizontal scaling in / out using AWS APIs
Load balancing, failure detection, and cost
management on AWS

Infrastructure as Code (Terraform)

2.2 Scaling with Containers
Building your own container-based
microservices

Docker containers

Manage multiple Kubernetes Cluster
Multi Cloud deployments

2.3 Functions as a Service
Develop event driven cloud functions

Deploy multiple functions to build a video
processing pipeline

11

Project 2.1 Learning Objectives

® Design solutions and invoke cloud APIs to programmatically provision
and deprovision cloud resources for a dynamic load.

e Configure and deploy an Elastic Load Balancer and an Auto Scaling
Group on AWS.

e Develop solutions that monitor cloud resource metrics to manage cloud

resources with the ability to deal with resource failure.

12

Project 2.1 Learning Objectives cont.

® Analyze a workload pattern and develop elasticity policies to maintain
the Quality of Service (QoS) of a web service.

® Account for cost as a constraint when provisioning cloud resources and
analyze the performance tradeoffs due to budget restrictions.

® Orchestrate infrastructure on the cloud using Terraform as part of the

deployment process.

13

Overview of Quality of Service (QoS),
Latency and Cloud Elasticity

Quality of Service (QoS)

Load patterns for web services
Vertical scaling (Scale up/down)
Horizontal scaling (Scale out/in)
Load balancers

Autoscaling groups

Resource monitoring (CloudWatch)

14

Quality of Service (QoS)

Quantitatively Measure QoS

e Performance: Throughput, Latency
(Very helpful in Project 2 & Team Project)

e Availability: the probability that a system is operational at a given time
(Project 2)

e Reliability: the probability that a system will produce the correct output

15

QoS Matters:

e Amazon found every 100ms of latency
cost them 1% in sales (~$1B).

16

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

Bandwidth

Netflix Traffic Comparison - House of Cards Season 3 Launch Weekend

Thursday
o g o b b b b o o ot o o b
)
0°°m°° 5_0%0%0%0%0%0“ L o° o

APy T e° e° o° . 0‘3 WF® m° c° Ny

——Typical Weekend (Feb 19 - 22)

Friday

Saturday

o ot ‘}‘b‘b“‘r‘b‘hﬁh
o~ Qvevq°w
N h%o%e“\oo Y c°$o°0 °o°

Sunday

SR 0 08 g8 8 o 8 8 8
SN0

A b b R A A b
% N ORI v!:&.e $c° S e°e°o°0°a°c°c°o°

o
o
o

—House of Cards Launch Weekend (Feb 26 - Mar 1) [~Jsandvine

The Ferenstein Wire

17

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

BLACK
FRIDAY
NOV 23

THANKSGIVING

NOV 22

2012 Holiday shopping result

CYBER
MONDAY

NOV 26

GREEN
MONDAY
DEC 10

FREE
SHIPPING
DAY

sl NEW
YEAR'S
EVE

XMAS

sapient.com
18

Cloud Comes to the Rescue!
Scaling!

19

PO: Vertical Scaling

Load
Generator

=

X

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

20

PO: Vertical Scaling Limitation

e However, one

vavs e —
\

limited resources. Load
Generator

e Reboot/Downtime.

Horizontal Scaling

Load — 7
Generator

- ~

22

How do we distribute load?

23

Instance Failure?

e e
S

24

VWhat You Need

* Make sure that the workload is even on each server
Do not assign a load to servers that are down

* Increase/Remove servers according to a changing load
How does a cloud service help solve these problems?

—
2

Load Balancer

Managed group of servers 25

Load balancer

e “Evenly” distribute the load
e A simple distribution strategy
o Round Robin

® Load check
e Health check

Load Balancer

e What if the Load Balancer becomes the bottleneck?
o Elastic Load Balancer (ELB)
m Could scale up based on load
o Elastic, but it still takes time
m Through the warm-up process

26

Scaling

Manual Scaling:

e Over provisioning and low utilization
e EXxpensive on manpower
e Lose customers

Autoscaling:

e Automatically adjust the size based
on demand

e Flexible capacity and scaling sets
e Save cost

Traditional Scaling

Lost customers

Capacity

Wasted Capacity

Time

Amazon Auto Scalin

Capacity

Time

Virtuas lized Infrastructu re

27

AWS Autoscaling

Auto Scaling on AWS [Auto Scaling Group

Round }'?obin

You can build a load balanced HTTP Connections

auto-scaled web service. W g >

|

|

|

Using the AWS APIs: Health l
|

|

e ELB |
e Auto Scaling Group W - i
e EC2 | s |
e CloudWatch - i |
e Auto Scaling Policy & |
|

|

I

|

Amazon Auto Scaling Group

Elastic Load

Balancer Auto Scaling Group
User Load EC2 Instance
'-:—-f’: = — — — — - - - -—) wo CPU Utilization Mo Network Owt —
== EC2 Instance
= 2 s
Amazon CloudWatch
EC2 Instance
Scale In
Rule je—
EC2 Instance A
_______________________________________ Scale Out

Rule .

29

Amazon CloudWatch Alarm

CloudWatch: Application ELB v

All resources . & Service dashboard

ALARM @) INSUFFICIENTDATA @) ok @

Request Count Sum HTTP 5XX Count

Various units Various units

@ app/elb-projec...

15.8k @ app/elb-projec... ik
@ app/elb-projec...
@ app/elb-projec...
7.88k @ app/elb-projec... 222K
@ app/elb-projec...
@ app/elb-projec... 5
0 :
0016 - [] app{elb-pro;ec... -

09/19

1h 3h 12h 1d 3d 1w custom ~

@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...

Actions -~

Q

Active Connection Count Sum

Various units

21.0k

10.5k

79
09/16

CloudWatch

09/19

@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
® app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...
@ app/elb-projec...

30

e Task1

o AWS Horizontal Scaling

e Task 2

o AWS Auto Scaling

e Task 3

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

Load <:>
Generator

31

Project 2.1 Scaling on AWS

Task 1 - AWS Horizontal Scaling:

e Implement Horizontal Scaling in AWS.

e Write a program that launches web
service instances and ensures that the
target total RPS is reached.

Load —
Generator

e Your program should be fully
automated: launch LG — submit
password — Launch WS — start test
— parse log — add more WS...

32

Project 2.1 Scaling on AWS

Autoscaling Group

-
e Task1
o AWS Horizontal Scaling
' o Task 2
® o AWS Auto Scaling Load
Generator
e Task3

o AWS Auto Scaling with Terraform

P2.1-Task 2

Programmatically create LG, Application Load Balancer (ALB), Auto-Scaling
Group (ASG) along with Auto Scaling Policy, launch configuration, and target
group.

Adjust Scale-Out and Scale-In policies if necessary

Your solution also needs to be fault tolerant

Health configurations are important

Elastic Load Balancer

Target Group

Launch Configuration

Auto Scaling Group
CloudWatch Alarm

Add Resource

Remove Resource

Actions (Policies) 34

Hints for Project 2.1 AWS Autoscaling

Task 2 - AWS Auto Scaling

e Do adry run via the console to make sure you understand the workflow
e The Autoscaling test could be very expensive!
o On-demand, charged by per second, do not blindly launch tests

e CloudWatch monitoring is helpful for policy tuning.

35

Hints for Project 2.1 cont.
Task 2 - AWS Auto Scaling

e Observe and analyze the pattern, experiment with a policy, collect data to
verify why it achieved a certain performance, and iterate until you achieve
your goal.

e Explore ways to check if your instance is ready.

e You will need spend a lot of time understanding the APl documents.

36

Project 2.1 Scaling on AWS

Autoscaling Group

e

e Task1
o AWS Horizontal Scaling
e Task 2
o AWS Auto Scaling Load
' o Task 3 Generator
e

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

'Task 3 - AWS Auto Scaling with Terraform:

e Read the “Infrastructure as Code” primer to learn about infrastructure
automation

e Make sure that terraform plan generates the expected resource

e Make sure that all the variables (AMI ID, CloudWatch thresholds, Security
Group names, etc.) are manually specified in the terraform main file

38

Project 2.1 Code Submission

You submit each task, run the submitter within that tasks folder. The
submitter executes your code for that task and submits your code to
TheProject.Zone.

We will grade your code for each task separately.

There are a lot of manual scoring points, follow our directions and don’t take
any shortcuts

39

Penalties for Project 2.1

Violation Pen_alty of the
project grade
Spending more than $20 for this project phase on AWS -10%
Spending more than $40 for this project phase on AWS -100%
Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
: _) -10%
with the tag: key=Project, value=2.1
Submitting your AWS/Andrew credentials in your code for grading -100%
Using instances other than t3.micro (testing only) or m5.large for Horizontal scaling on
-100%
AWS
Using instances other than t3.micro (testing only), m5.large for Autoscaling on AWS -100%
Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh, _100%
etc.)

40

Penalties for Project 2.1 cont.

Violation

Attempting to hack/tamper the autograder in any way

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on
academic integrity and our syllabus)

Penalty of the
project grade

-200%

-200%

41

AWS Cloud APIs

e AWS CLI (link)

e AWS Java SDK (link)

e AWS Python SDK (link)

amazon

webservices™

42

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

This Week

e Quiz 3 (OLI Modules 5 & 6)

o Due on Friday, September 25th, 2020, 11:59PM ET
® Project 2.1 and Reflection

o Due on Sunday, September 27th, 2020, 11:59PM ET
e Project 1.2 Discussion

o Due on Sunday, September 27th, 2020, 11:59PM ET
e P1.2 Code Review

o Due on Wednesday, October 7th, 2020, 11:59PM ET
® Primers released this week

o P2.2 - Intro to Containers and Docker

o P2.2 - Kubernetes and Container Orchestration

© Online Programming Exercises

