

Reflection of Last Week
● Conceptual content on OLI

○ Modules 5, 6 and Quiz 3
● Project theme - Horizontal Scaling and Advanced Resource

Scaling
○ AWS Horizontal Scaling

■ Launch cloud resources via the AWS APIs (EC2)
■ Horizontally scale instances to reach a target RPS

○ AWS Autoscaling
■ Launch cloud resources via the AWS APIs (ALB / ASG…)
■ Design autoscaling policies to achieve RPS targets within

instance hour limits
■ Handle instance failures

○ AWS Autoscaling with Terraform
■ Develop a Terraform template to launch cloud resources
■ Contrast infrastructure as code (IaC) and cloud APIs

This Week
● Code Review - Project 1.2

○ Due on Wednesday, Sept 30th, 2020, 11:59PM ET
● Quiz 4 (OLI Modules 7, 8 & 9)

○ Due on Friday, Oct 2nd, 2020, 11:59PM ET
● Practice OPE signup via Piazza link

○ Due on Saturday, Oct 11th, 2020, 11:59PM ET
● Project 2.2

○ Due on Sunday, Oct 4th, 2020, 11:59PM ET
● Primers released this week

○ Introduction to Cloud Functions
○ MongoDB Primer
○ MySQL Primer
○ NoSQL Primer
○ Profiling a Cloud Service
○ Python Version Management and VSCode for Azure Functions
○ Storage I/O benchmarking

●

○
○
○
○
○
○
○

●

○

○

○

○

○

●
○

○
○

●
○
○

●
○
○

●
●
●

●
○
○
○

●
○
○
○
○

●
○
○

●
●

●

●
●
●
●

●

●
●
●

●
○
○
○
○
○

●

Debian as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Debian Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

● docker build
○

● docker run
○

●
○ docker images

●

○ docker ps

●
○
○
○

19

●
●
●

●
●

docker build nginx

build nginx

21

•
•

•
•
•

• docker pull
• docker push

22

●
○
○

●

○
○

●

●

○
○
○
○
○

https://kubernetes.io/docs/whatisk8s/

●
○
○
○

●
○

●
○ kubectl create config.yaml

https://kubernetes.io/docs/user-guide/kubectl-overview/

●
○
○
○

●
○
○

apiVersion: apps/v1beta1
kind: Pod
metadata:
 name: Sample-Pod
 labels:
 app: web
spec:
 containers:
 – name: front-end
 image:
gcr.io/samples/hello-frontend:1.0
 ports:
 – containerPort: 80
 – name: hello-app
 image:
gcr.io/samples/hello-app:1.0
 ports:
 – containerPort: 8080

● A tool for managing Kubernetes applications
● Helm Charts help you define, install, and upgrade

complex Kubernetes application
● Chart structure:

○ Chart.yaml
■ A YAML file that contains chart information (name, version, description, etc.)

○ Values.yaml
■ The default configuration of this chart. The values listed in this file will be

substituted in the files under the templates/ directory.
○ templates/

■ A directory of template files that will be combined with the values defined in
Values.yaml. The files under this directory will be used to define all of the
Kubernetes objects required to deploy the application.

● Loosely coupled applications, that generally communicate

over a network and exist independently of each other.

● Why Microservice

○ Application Size

○ Scalability

○ Modifiability

○ Fault-tolerance

●

●
○
○
○

○

○

○

●
●

○ docker build
○ docker images
○ docker run
○ docker ps

●

●

○

●
○
○

●

<ec2.***.amazonaws.com:8000> <profile-service:8080>

● Push your image to a private registry
○ Push the profile service Docker image to Google

Container Registry (GCR)

● Define a Kubernetes YAML configuration to
○ Create a deployment based on the image pushed

to GCR
○ Expose the profile service via a (GCP) load balancer

● Profile service
architecture

● The backend
application accepts
GET requests at
/profile

● The load balancer will
map port 80 to port
8080

● Deploy a MySQL database using Helm
○ Update the profile service to use MySQL instead of

the embedded H2 database
○ Remember to push your updated image to GCR!

● Develop a Helm chart for the profile service
○ Release the profile service via helm

● Profile service
architecture
(MySQL)

● The backend
application
accepts GET
requests at
/profile

● The load
balancer should
map 80 to 8080

● Builds on Task 3
○ Additional login and group chat services

● Login service
○ Requires a separate MySQL database to store user

login information

● Group chat service
○ Redis Pub/Sub messaging channel for scalability

and real time communication
○ A separate MySQL database to persist messages

• An API object that manages external access
to the services in a cluster, typically HTTP.

• Ingress exposes HTTP and HTTPS routes from
outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the
Ingress resource.

•

•

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.github.io/ingress-nginx/deploy/

● Builds upon Task 4
○ Consider how to handle downstream service failures

● Achieving high availability
○ Multi cloud deployments!
○ Autoscaling Kubernetes deployments to

accommodated increased traffic
○ Use the HorizontalPodAutoscaler Kubernetes

object to scale the pods

- In this task, you will use Azure Front Door Service to
achieve a path-based routing to the web application
deployed on Azure and GCP.

- We will define Domain Name System (DNS) to map
two IP address from previous tasks, to a single
domain name.

● Debug, debug, debug
○ This project has many moving pieces!
○ Where is the issue occurring?
○ What is the expected behavior of the system?

● Pods and Logs
○ Did my pod start?

■ (kubectl get pods , kubectl describe pods)
○ Is my pod generating any logs?

■ (kubectl logs …)

● Code Review - Project 1.2
○ Due on Wednesday, Sept 30th, 2020, 11:59PM ET

● Online Programming Exercises
○ You will be notified of your schedule by email
○ Attend your scheduled session!

● Quiz 4 (OLI Modules 7, 8 & 9)
○ Due on Friday, Oct 2nd, 2020, 11:59PM ET

● Project 2.2
○ Due on Sunday, Oct 4th, 2020, 11:59PM ET

