
221

TEAM PROJECT
Twitter Data Analytics

2

Query 1 Recap

3

● All 21 teams attempted Query 1 10-minute submission
● 8 teams reached 32,000 RPS

4

If the throughput is lower than expected
● Try m6g instances

○ If you build your own ami, you might need to rebuild it
since it’s arm-based

● Identify the bottleneck
○ Use a profiler
○ Logging timestamps before and after each function

● Change to another framework or even language

If the correctness is lower than expected
● Read the writeup more carefully

5

https://aws.amazon.com/ec2/instance-types/m6/

Twitter Analytics System Architecture

● Building a performant web service
● Dealing with large scale real world tweet data
● HBase and MySQL optimization

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

~ 1TB

6

Query 2 - User Recommendation System

Use Case: When you follow someone on twitter, recommend users you may
also be interested in
Query: GET
/q2?user_id=<ID>&type=<TYPE>&phrase=<PHRASE>&hashtag=<HASHTA
G>
Response:

<TEAMNAME>,<AWSID>\n
uid\tname\tdescription\ttweet\n
uid\tname\tdescription\ttweet

Three Scores:
• Interaction Score - closeness
• Hashtag Score - common interests
• Keywords Score - match specific interests

Final Score: Interaction Score * Hashtag Score * Keywords Score
7

target throughput: 10,000 RPS for both MySQL and HBase

Query 2 - Contact Tweets
Given a valid tweet JSON object t.

A contact tweet is a tweet that is either a reply tweet or a retweet.

● A tweet is a reply tweet if t.in_reply_to_user_id is not null.
● A tweet is a retweet if t.retweeted_status is not null.

8

Query 2 - User Information
Given a valid tweet JSON object t.

User information can appear in t and t.retweeted_status objects.

● For any tweet t, we can find the sender information in t.user
● If the tweet t happens to be a retweet, we can additionally find the original

poster’s information in t.retweeted_status.user

For each user appeared, we can get the timestamp from t.created_at.

After processing all the valid tweets, we can get the latest information of all users.

Note: For user information with the same timestamp, break the tie by tweet ID in
descending numerical order.

9

Query 2 - Filtering

Each line from the dataset is supposed to be a valid tweet object

- Malformed JSON Object
- Malformed Tweets

- Make sure each tweet you keep has valid tweet id, sender’s
user id, timestamp, content and at least 1 hashtag

- Tweets not in the required languages
- Duplicate Tweets

10

Query 2 - Interaction Score
There are two types of interactions: reply and retweet. The more replies and
retweets between two users, the higher their interaction score. Interaction score is
calculated as log(1 + 2 * reply_count + retweet_count)

Some examples are below:

1. A replied B 4 times; B retweeted A 3 times log(1 + 2*4 + 1*3) = 2.485
2. A replied B twice; B replied A once log(1 + 2*(2+1) + 1*0) = 1.946
3. A retweeted B once log(1 + 2*0 + 1*1) = 0.693
4. no replies/retweets between A and B log(1 + 2*0 + 1*0) = 0

11

Query 2 - Hashtag Score
Same hashtags count is calculated by counting hashtags among all the tweets two users posted, excluding
popular hashtags from the list provided by us. The final hashtag_score is calculated as follows.

● If same_tag_count > 10, then hashtag_score = 1 + log(1 + same_tag_count - 10).
● Else, hashtag_score = 1

26

Note: For the cases of
self-reply or self-retweet (the
reply or retweet is to the
same user of the original
tweet), the hashtag score
will always be 1.

Note: hashtags are
case-insensitive

12

Query 2 - Keyword Score
Keywords score is calculated by counting the total number of matches of phrase and also hashtag (both
provided in the query) across the contact tweets of a specific type. The type is given in the query, and
valid values are [reply|retweet|both].

Matching rule for the phrase: case sensitive match.

Another example, for phrase haha

● hahaha has 2 matches (overlapping matches are possible)
● haHaha has no matches
● Haha bahaha has 1 match

Matching rule for the hashtag: case insensitive exact match.

For example, if hashtag in the request is cloud, and a tweet has hashtags #Cloud #CLOUD #CLOUD
#cmu (note that duplicate tags are allowed), then this tweet will add 3 to number_of_matches.

Between two users, if there are no contact tweets of the type specified in the query, then
keywords_score = 0.

Otherwise, keywords_score = 1 + log(number_of_matches + 1).

13

Query 2 - Final Score and Ordering

Final Score
The final ranking score between two users is calculated as

final_score = interaction_score * hashtag_score * keywords_score

• log base is e,
• keep 5 decimal points of precision for the final score rounding half up before ranking.
• ignore user pairs with a final score of 0.

Ordering
Your web service should return the most up-to-date information of users and their latest contact
tweet with the user.

• Rank by the score in descending order.
– Break ties by user ID in descending numerical order.

For the latest contact tweets between two users, break the tie by tweet ID in descending
numerical order if they have the same timestamp.

14

Q2 Roadmap
● Do the filtering on the first part of the dataset and make sure the result is exactly

the same as the reference answer. (See Reference the ETL result of a small
dataset at the end of the Query 2 write-up.)

● Start ETL on the mini dataset in GCP/Azure, pick some queries as the test cases
and compare your result against the mini reference server (See Phase1 -
Reference Server in the write-up)

○ Before loading the result of mini dataset to MySQL and HBase, read the
write-up (Overview of Tasks - ETL) carefully

○ You can load into MySQL first if you are more familiar with it. It’s highly
recommended to test loading into HBase (AWS EMR) as well to get
familiar with HBase. This will save you so much time and budget when you
try to load the entire dataset into HBase in the next step.

15

Continued ….

Q2 Roadmap (continued)
● Start ETL on the entire dataset in GCP/Azure and compare your result against

the reference server. Once you think the result good enough, load them to AWS.
● Start submit your endpoint to TPZ to test your implementation.
● Improve your implementation to achieve at least 80% correctness.

○ If you initial test on the mini dataset is not good enough, you may need to
redo the entire ETL process multiple times!

● Optimize your implementation to reach the target throughput.

16

Reminders on penalties
● M family instances only, smaller than or equal to large type

● Other types are allowed (e.g., t2.micro) but only for testing

○ Using these for any submissions = 100% penalty

● Only General Purpose (gp2) SSDs are allowed for storage

○ e.g m5d is not allowed since it uses NVMe storage

● AWS endpoints only (EC2/ELB).

● $0.70/hour (MySQL) and $0.85/hour (HBase) applies to every

submission
17

Phase 1 Budget

● Your web service should not cost more than $0.70/hour (Q1
and Q2 MySQL) and $0.85/hour (Q2 HBase) this includes:
○ EC2 cost (Even if you use spot instances, we will calculate

your cost using the on-demand instance price)
○ EBS cost
○ ELB cost
○ We will not consider the cost of data transfer and EMR
○ See writeup for details

● AWS total budget of $55 for Phase 1

18

Spark, Scala and Zeppelin Primers

● Primers for Apache Spark/Scala/Zeppelin are now available

● You'll learn more about Spark in 3rd OPE, Project 4.1, and OLI

Module 20

● Spark stores data in memory, allowing it to run an order of

magnitude faster than Hadoop

● You can use Spark or Hadoop - it is your choice since you have

total freedom in ETL frameworks

19

https://theproject.zone/s20-15619/spark
https://theproject.zone/s20-15619/scala
https://theproject.zone/s20-15619/zeppelin

Phase 1 weeks Tasks Deadline

●
●
●
●
●

●
●

●
●
●

●

●
●
●

●
●

●

●
●
●

20

