15-319 / 15-619
Cloud Computing

Overview

e Last week’s reflection
— Spark OPE
— Team Project Phase 1
— OLI Unit 4: Modules 15, 16, 17
— Quiz 8
e This week’s schedule
— Project 4.1, due on Sunday, Nov 8t
— OLI Unit 5: Module 18

— Quiz 10, due on Friday, Nov 6™
e Twitter Analytics: The Team Project
— Query 3 Early Bird Bonus, due on Sunday, Nov 8%

2

Modules to Read

 UNIT 5: Distributed Programming and Analytics

Engines for the Cloud

— Module 18: Introduction to Distributed ‘
Programming for the Cloud

Project 4, Frameworks

e Project4.1

— Iterative Batch Processing Using Apache
Spark

Typical MapReduce Batch Job

e Simplistic view of a MapReduce job

Input

[HDFS }——* Mapper

Reducer

Output

(o)

* You write code to implement the following classes

— Mapper
— Reducer

e |nputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk

Iterative MapReduce Jobs

 Some applications require iterative processing

* E.g., Machine Learning

->[HDFS]—' Mapper

e MapReduce: Data is always written to disk

Reducer

Prepare data for the next iteration

Output

-

— This leads to added overhead for each iteration

— Can we keep data in memory? Across Iterations?

— How do you manage this?

Key to Apache Spark - RDDS

Resilient Distributed Datasets (RDDs)
Can be in-memory or on disk

Read-only objects
Partitioned across the cluster based on a range or

the hash of a key in each record

' I
Machine A t RDD1 RDD1’

| RDD Operation

Machine B \\ RDD2 (e.g. map, filter) \— RDD2

Machine C L | L
RDD3 RDD3

Apache Spark

e General-purpose cluster computing framework
e APIs in Python, Java, Scala and R
e Runs on Windows and UNIX-like systems

RDD Objects Spark Client Task Scheduler Worker
(Application Master)

| Scheduler and
RDD Graph
Threads
-\ Cluster Manager Block Manager
\ -

S |
" /B —

=t

+Eilteri..) Trackers

Spark Ecosystem

Spark SQL
O Process structured data

o Run SQL-like queries against RDDs
Spark Streaming

o Ingest data from sources like Kafka
o Process data with high level functions like map and reduce

o Output data to live dashboards or databases
MLlib

o Machine learning algorithms such as regression

o Utilities such as linear algebra and statistics
GraphX

o Graph-parallel framework
o Support for graph algorithms and analysis

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Apache Spark APIs

® There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed

Dataset (RDD)

-

_

e Distributed

collection of
JVM objects
Functional
operators

(map, filter, etc.)

~

/

DataFrame

o

Distributed \

collection of
Row objects

No compile time
type safety
Fast, efficient
internal

Datasets

-

representationsj

_

e Compile time

type-safe

e Fast

~

/

10

Operations on RDDs

Loading data
>>> input_RDD = sc.textFile("text.file")

Transformation
— Applies an operation to derive a new RDD

— Lazily evaluated -- may not be executed immediately
>>> transform RDD = input RDD.filter(lambda x: "abcd" in x)

Action
— Forces the computation on an RDD

— Returns a single object
>>> print "Number of “abcd”:" + transform RDD.count()

Saving data
>>> output.saveAsTextFile(“hdfs:///output™) 1

RDDs and Fault Tolerance

® Actions create new RDDs
e Uses the notion of lineage to support fault tolerance
o Lineage is a log of transformations
o Stores lineage on the driver node
o Upon node failure, Spark loads data from disk to
recompute the entire sequence of operations
based on lineage

12

DataFrames and Datasets

e A DataFrame is a collection of rows

o Tabular

o Organized into named columns, like a table in a relational DB
e A dataset is a collection of objects

o Domain specific

o Object oriented

Unified Apache Spark 2.0 API

Untyped AP

« DataFrame = Dataset[Row]
- Alias
Dataset
(2016)

Typed API

DataFrame

« Dataset[T]

13
€databricks

Operations on DataFrames

e Suppose we have a file people. json

{"name" :"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

e Create a DataFrame with its contents

val df = spark.read.json("people.json")

e Run SQL-like queries against the data

val sqlDF = df.where($"age" > 20).show()

+---t----+

| age | name |

e Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output”)

Note: Parquet is a column-based storage format for Hadoop.

14

Project 4.1

Spark OPE: Implement a TF-IDF inverted index

Task 1: Exploratory Analysis on a graph based
dataset

Task 2: Create an efficient Spark program to
calculate user influence

Bonus: Use Azure Databricks to run Task 2

15

Twitter Social Graph Dataset

e tsvformat
® Appx. 10GB of data (do not download)
e Edge list of (follower, followee) pairs
o Directed
e # of followers distribution — power tail

0.10
0.09
0.08
0.07
2 006
5
8 0.05
0.04
0.03
0.02
o IIIIII... EnN H=mll
000 mEEEeREl Al e =
0.00 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1.0k
count 1 6

Task 1 Exploratory Data Analysis

e Two partsto Task 1
a. Counting using Zeppelin notebook
m Find the number of edges
m Find the number of vertices
b. Find top 100 most-popular users
m RDD API
m Spark DataFrame API

17

Task 2: PageRank

e Started as an algorithm to rank websites in
search engine results

® Assign ranks based on the number of links
pointing to them

® A page that has links from
o Many nodes = high rank
o A high-ranking node = (slightly less) high rank

e |n Task 2, we will implement pagerank to find the
rank of each user

18

Basic PageRank

e How do we measure influence?
o Intuitively, it should be the node with the most followers

Y 1//

19

Basic PageRank

e Influence scores are initializedto 1.0 / # of vertices

0.333 0.333

0/—\2

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

0.333 0.333

Y 1//

0.333

21

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following

From Node 0 From Node 1
0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 29

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

PageRank is guaranteed to converge

From Node 0 From Node 1

0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 23

Basic PageRank

Influence scores are initializedto 1.0 / # of vertices
In each iteration of the algorithm, scores of each user are
redistributed between the users they are following
Convergence is achieved when the scores of nodes do not
change between iterations

PageRank is guaranteed to converge

L 1//

0.396

0.208 0.396

24

Basic PageRank Pseudocode

(Note: This does not meet the requirements of Task 2)

val links = spark.textFile(...) .map(...) .cache()
var ranks = // RDD of (URL, rank) pairs
for (i1 <- 1 to ITERATIONS)
{
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{
case (url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey(_ +)
.mapValues (sum => a/N + (1l-a)*sum)

}

Reference: https://qithub.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 25

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

PageRank Terminology

e Dangling or sink vertex
o No outgoing edges
o Redistribute contribution equally among all vertices
e |solated vertex
o No incoming and outgoing edges
o No isolated nodes in Project 4.1 dataset
e Damping factor d
o Represents the probability that a user clicking on links
will continue clicking on them, traveling down an edge
o Used=0.85

P

D
/
{

== -
7/0\1* (i)
\ ’/’

/ h / o
Dangling vertex \ /

Y i
(\\
| 1 '

£ \
< '\i) a— Isolated vertex

26

Visualizing Transitions

e Adjacency matrix:
0 0 0 0

G —

IOO»—\
o=
i

IOOO

e Transition matrix: (rows sumto 1)

(0.25 0.25 0.25 0.25] @
0o 0 05 O
M= 0 1 0 0

025 025 0.25 0.25

Mij Gij (when Z sz 7é O) @
k=1

; ZZ:1 Gk

27

Task 2: PageRank

Formula for Calculating rank
k—l—l)_d Z 'r d)rio)

’UJEN v;)
@ d=0.85

(0) (0) (0)

r T P 1
ro) =d(—5+ -+)+ (1-d)=
(0) (0) (0)
I
) =d(Z+ 2+ 2+ (1-d)-
(0) (0) (0)
5 r r 1
rg”_al(l2 +)+ -d)-
RO A M)

Task 2: PageRank

@ Formula for Calculating rank
kH) =d Z fr d)frgo)
’UJEN v;)

d=0.85
@ Note: contributions from isolated and

dangling vertices are constant in an
iteration

Let

29

Task 2: PageRank

O

. D)
r(())—d——i—e—l—(l—d)

: (0)
rg)_d 2 tet(1—d)

(0)
r! —d—+e+(1—d)

ri) = e+ (1—d)

S|P3l 3|l 3+

&

This simplifies the formula to

Formula for calculating rank
k—i—l)_d Z T d)?“go)

Vj EN vZ

d=0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

30

Task 2: PageRank

@ Formula for calculating rank
Pt — g Z it — d)r?
’UJEN

e = 0.85 x (0.25/4 + 0.25/4) = 0.106

ri) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
rit = 0.85 x 0.25 + 0.106 + 0.15 x 0.25 = 0.356
(1) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
ri =0.106 + 0.15 x 0.25 = 0.144

31

Task 2: PageRank

Formula for calculating rank
k—i—l) —d Z 7“ —d)r (0)

v; EN (v;

r = 0.2656
ri¥) = 0.3487
r{¥) = 0.2656
r =0.1199

32

What you need to do for Task 2

® Run your page rank application on a 10GB
graph data for 10 iterations.

e Using HDInsight cluster on Azure:
o Use the Terraform template provided
o Very expensive - 2.6USD per hour

® Scoring for Task 2 has 2 components:
o 100% correctness for page rank - 30 points
o Performance optimization (runtime within
30 minutes) - 30 points

33

General Hints

Starter code:

o SparkUtils.scala - Use this for creating SparkSession objects.
Test out commands on a Zeppelin notebook (refer to the Zeppelin
primer)

Test Driven Development (TDD):
o Starter code contains a small graph test.
Develop and test locally first!
Develop and test locally first!
Develop and test locally first! HDInsight clusters are expensive
Add more test cases to check robustness.
Each submission can take anywhere from 6 min to an hour to run on
the cluster.
When in doubt, read the docs!

o SparkSQL

o RDD
Don’t forget to include in your submission

o Updated references file
Arguably the hardest P4 project. Start early!

O O O O O

34

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Pagerank Hints

e Ensuring correctness

O Make sure total scores sum to 1.0 in every iteration

o Understand closures in Spark

m Do not do something like this
val data = Array(1,2,3,4,5)
var counter = 0
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += Xx)
println("Counter value: " + counter)

o Graph representation
m Adjacency lists use less memory than matrices

o More detailed walkthroughs and sample calculations
can be found here

35

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Spark Ul

Provides useful information on your Spark programs

Info about cached
RDDs and

memory usage

Status of RDD
actions being
computed

v DAG Visualization

In-depth job info

Details for Stage 1 (Attempt 0)

Total Time Across All Tasks: 46 ms
Locality Level Summary: Any: 1
Shuffle Read: 50.0 B/ 2

[l Scheduler Delay Executor Computing Time
[l Task Deserialization Time Shuffle Write Time

Shuffle Read Time M Result Serialization Time

Getting Result Time

driver / localhost

30 085 090

095 100 105 110 115 120 125 130 135
08:11:09
Summary Metrics for 1 Completed Tasks
Metric Min 25th percentile Median 75th percentile
Duration 46 ms 46 ms 46 ms 46 ms

140

46 ms

You can learn about resource utilization of your cluster
Is a stepping stone to optimize your jobs

Spark shell application Ul

145 150

36

Optimization Hints

Understand RDD manipulations

o Actions vs Transformations

o Lazy transformations

Use the Ambari Ul

o Are you utilizing your cluster completely? How can you
change that? Refer optimization hints in the writeup.

Use the Spark Ul

o Are your RDDs cached as expected?

o Memory errors - check container logs

o Parameter tuning applied successfully?

o Exponential increase in partitions?

How do you represent the node IDs? Int/String/Long?

Many more optimization hints in the writeup!
37

Bonus Task - Databricks

Databricks is an Apache Spark-based unified analytics
platform.

Azure Databricks is optimized for Azure

o Software-as-a-Service

One-click setup, an interactive workspace, and an
optimized Databricks runtime

Optimized connectors to Azure storage platforms for
fast data access

Run the same PageRank application (in Task 2) on
Azure Databricks to compare the differences with
Azure HDInsight

38

What you need to do for bonus?

You can only get bonus (10 points) when:

o 100% correctness

o Runtime under 30 minutes on Databricks

Copy your code to a Databricks notebook:

o Do not create or destroy SparkSession objects

o Change the output to DBFS instead of WASB
Create a cluster and job using databricks-setup.sh
Submitter takes in a job ID

Don’t forget to destroy resources after you are done!

39

How to change your code?

object PageRank {
def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

... Your implementation goes here ...
graphRDD = sc.textFile(inputGraphPath)
graphRDD.map(...)

spark.close()

}

def main(args: Array[String]): Unit = {
val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "wasb:///pagerank-output"
val iterations = 10

calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)

}
}

40

How to change your code?

val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "dbfs:/pagerank-output"

val iterations = 10

... Your implementation goes here ...

graphRDD = sc.textFile(inputGraphPath)

graphRDD.map(...)

spark.close()

41

TEAM PROJECT
Twitter Data Analytics

= + 9= 1T

Twitter Analytics Web Service

Team Project

Given ~1TB of Twitter data

Build a performant web service

to analyze tweets

Explore web frameworks

Explore and optimize database systems

Query

THEPRJECTZONE —

Load Generation _ Web-tier
Response \H'ITP Web Service /

Twitter Analytics System Architecture

GCP Dataproc, Azure
HDInsight, or Amazon EMR

* Response | HTTP Web Service

Submitter

StayUpForCC

MakeTwitterGreatAgain

Team Rocket

Team Mellon
YiQiGanCC

abc123

INI OG

WGW

Tritter
BareMetalAlchemist
YJZ

Invictus

LinuxServersMostly

Phase 1 Scoreboard (f19)

e
T

Score

53

15

15

15

15

15

15

15

15

15

15

15

15

Q1
Score
(10)

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

10.00

Q1
Effective
Throughput

37718.70
45309.10
54620.60
43387.95
35997.72
37137.18
36160.00
41129.47
45881.96
37226.90
41602.20
43555.64

42809.91

Q1
Checkpoint
(5)

5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00

5.00

Q2
Effective
Throughput

10417.34
11749.02
11309.00
11004.39
10135.53
6647.94
6381.85
6055.08
5229.94
1042.53
203.47
0.00

0.00

Q2
Score
(50)

38.33
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

Q2
Checkpoint(10)

0.00

0.00

0.00

Phase 1 Scoreboard (s20)

IF a1 Q1 Q2
Score Q1 Effective Checkpoint Q2 Effective Score Q2

Submitter Score (10) Throughput (5) Throughput (50) Checkpoint(10)
WhiteGiving 75 10.00 63447.41 5.00 27457.60 50.00 10.00
4013 75 10.00 38007.40 5.00 33015.50 50.00 10.00
infinity 75 10.00 43284.70 5.00 10935.33 50.00 10.00
Doge 65 10.00 37874.70 5.00 10990.95 50.00 -
Best_In_Adelaide 57 10.00 33491.50 - 10656.59 47.46 -
PepeFTW 52 10.00 56329.20 5.00 10333.10 37.52 -

SV No.1 51 10.00 37369.10 5.00 13029.90 36.58 -
thaiguy 45 10.00 42617.40 5.00 9158.30 30.91 -
Frantic Horizon 40 10.00 53972.28 - 6875.56 30.84 -

HKJournalist 20 10.00 33723.30 - 0.00 0.00 10.00

Team Project

e Phase 2
o Q1
o Q2 & Q3 (MySQL AND HBase)

e Phase 3
o Q1
o Q2 & Q3 (MySQL OR HBase)

-

47

Team Project Time Table

o
==
o=
o
=
o
=

i

Phase (and query due) Start Deadlines Code and Report Due
Phase 1 Phase 1: Tuesday
e Q1,02 03/31/2020 23:59:59 ET
(upload PDF report and
verify your submission)
Phase 2 Monday 03/30/2020 Q3 Early Bird Bonus: Sunday
e Q1,Q2Q3 00:00:00 ET 04/05/2020 23:59:59 ET
Phase2 Due: Sunday
04/12/2020 15:59:59 ET
Phase 2 Live Test (Hbase AND | Sunday 04/12/2020 Sunday 04/12/2020 Tuesday 04/14/2020
MySQL) 17:00:00 ET 23:59:59 ET 23:59:59 ET (upload PDF
e Q1,Q2,Q3 report and verify your
submission)
Phase 3 Monday 04/13/2020 Sunday 04/26/2020
e Q1,Q2, Q3 (Managed 00:00:00 ET 15:59:59 ET
services)
Phase 3 Live Test Sunday 04/26/2020 Sunday 04/26/2020 Tuesday 04/28/2020
e Q1,Q2, Q3 (Managed 17:00:00 ET 23:59:59 ET 23:59:59 ET

services)

48

Team Project Deadlines

e Phase 2 milestones:

o Q3 Bonus (Reach Q3 target, MySQl +HBase):
m due on Sunday, April 5

o Phase 2, Live test:

m Q1/Q2/Q3/mixed on Sunday, April 12

o Phase 2, code, scripts and report:

m due on Tuesday, April 14

49

Live Test Schedule - setup

Submit DNS for Live Test
Information
Time Task
4:00 pm HBase
4:00 pm MySQL
5:30 pm - 5:31 HBase DNS Validation
pm
5:33 pm - 5:34 MySQL DNS
pm Validation

Description
Submit your DNS for the HBase Live Test before the deadline
Submit your DNS for the MySQL Live Test before the deadline

Validate your HBase DNS. This is the last chance to update your DNS for the HBase Live
Test

Validate your MySQL DNS. This is the last chance to update your DNS for the MySQL Live
Test

50

Live Test Schedule - HBase

HBase Live Test

Information

Time

6:00 pm - 6:25 pm
6:25 pm - 6:50 pm
6:50 pm - 7:15 pm
7:15 pm - 7:40 pm

7:40 pm - 8:05 pm

Half-time Break

Information

Time

8:05 pm - 8:30 pm

Value

Warm-up (Q1 only)
Q1

Q2

Q3

Mixed Reads(Q1,Q2,Q3)

Value

Target

32000
10000
1500

10000/1500/500

Time to relax and prepare for the MySQL Live Test

Weight
0%

6%
10%
10%

44545 =14%

51

Live Test Schedule - MySQL

MySQL Live Test

Information

Time

8:30 pm - 8:55 pm
8:55 pm - 9:20 pm
9:20 pm - 9:45 pm
9:45 pm - 10:10 pm

10:10 pm - 10:35 pm

Value

Warm-up (Q1 only)
Q1

Q2

Q3

Mixed Reads(Q1,Q2,Q3)

Target

32000
10000
1500

10000/1500/500

Weight
0%

6%
10%
10%

44545 = 14%

52

AWS Budget Reminder

e Phase 2 budget is $60, with a double budget penalty at $100.

-10% grade penalty

Total budget $60 - $100
Live Test budget ~$20
Development budget ~$40 - ~$80

e Use GCP and Azure for ETL.
® Use spotinstances to reduce spending during development.

53

Hourly Budget Reminder

e Your web service should cost < $0.89/hour, including:

O

O

O

EC2
m We evaluate your cost using the On-Demand Pricing

towards $0.89/hour even if you use spot instances.
EBS & ELB
lgnore data transfer and EMR cost

® Phase 2 - Live Test Targets:

O

O
O
O

Query 1 - 32000 RPS

Query 2 - 10000 RPS (for both MySQL and HBase)

Query 3 - 1500 RPS (for both MySQL and HBase)

Mixed - 10000/1500/500 RPS (for both MySQL and HBase)

54

https://aws.amazon.com/ec2/pricing/on-demand/

Phase 2, Query 3

e Problem Statement
o Given a time range and a user id range, which tweets

have the most impact and what are the topic words?

® Impact score and topic words (see the write up for details)
o Impact of tweets: Which tweet is “important”? Calculate
using the effective word count, favorite count, retweet
count and follower count.
o Topic words: In this given range, what words could be
viewed as a “topic”? Done using TF-IDF.

® Request/Response Format
o Request: Time range, uid range, #words, #tweets.

o Response: List of topic words with their topic score, as
well as a list of tweets (after censoring).

Phase 2, Query 3 FAQs

Question 1: How to calculate the topic score?

For word w in the given range of tweets, calculate:
e Calculate the Term Frequency of word w in tweet t
e (Calculate Inverse Document Frequency for word w

e Calculate Impact Score of each tweet

® Topic Score for word w =
Y TF(w,) ¢ IDF(w) * In(Impact(f?) + 1),

for n tweets in time and uid range

Phase 2, Query 3 FAQs

Question 2: When to censor? When to exclude stop words?
® Censorinthe Web Tier or during ETL. It is your own
choice.

o If you censor in ETL, consider the problem it brings to
calculating the topic word scores (two different words
might look the same after censoring).

® You should count stop words when counting the total
words for each tweet in order to calculate the topic score.

® Exclude stop words when calculating the impact score and
selecting topic words.

Hints

Completely understand every AssessMe question.

Completely understand the definition of a word. This is different
for text censoring and calculating scores.

A guery contains two ranges. Log some requests to get an idea
on the range of user_id and timestamps.

Optimization is time-consuming. Before ETL, please

o Think about your schema design (rowkey for HBase in
particular).
o Think about your database configuration.

58

Hints

e Understand and keep an eye on
o EC2 CPU Credits and burstable performance

o EBS volume I/O Credits and Burst Performance

® Remember that you can put the web-tier and
storage-tier on the same instance.

59

Hints

e Profile your cloud service and think about which
component is the bottleneck.

e There are some useful tips for improving HBase
performance in the writeup of the NoSQL primer,
HBase primer and P3.1.

e Understand different metrics (e.g., locality, number of
read requests) in HBase Ul (port 16010) and HDFS Ul
(port 50070).

60

Warning

e NEVER open all ports to the public (0.0.0.0) when
using instances on a public cloud.

e For your purposes, you likely only need to open port
80 to the public. Port 22 should be open only to
your own machine.

e Port 3306 (for MySQL) and HBase ports should be
open only to cluster members if necessary.

61

Upcoming Deadlines

e P4.1 Iterative Batch Processing Using Apache Spark
O Due: 11/08/2020 11:59 PM EDT
e Quiz 10
O Due: 11/06/2020 11:59 PM EDT
® Team Project : Phase 2
O Early bird bonus due: 04/05/2020 11:59 PM Pittsburgh
O Live-test due: 04/12/2020 3:59 PM Pittsburgh

O Code and report due: 04/14/2020 11:59 PM Pittsburgh

Questions?

63

