
15-319 / 15-619
Cloud Computing

Course Overview 2

September 07, 2021

Accessing the Course

● Open Learning Initiative (OLI) Course
○ Access via canvas.cmu.edu

● The Sail() Platform (access through canvas)

○ choose CMU as the identity provider
○ AWS Account Setup (AWS, Azure, GCP)
○ Update your course profile with AWS, Azure & GCP info
○ Complete the Primers on AWS, Azure and GCP

● Piazza

http://canvas.cmu.edu
http://projects.sailplatform.org/
https://projects.sailplatform.org/profile
https://piazza.com/class/krupl2icdeo43k

Amazon Web Services (AWS) Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Log on to the Sail() platform through Canvas and

make sure you follow the instructions in the
Account Setup Primer

● Wait to receive Consolidated Billing Request email
from Amazon
○ The linking email is sent automatically, waiting

time varies
○ You need to manually accept the linking request

● When you receive the linking email, click the link to
verify the linked billing
○ Many students have not clicked on the link yet!

■ Check your SPAM folder
○ You won’t be able to complete the projects

without a linked account.

Azure Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Do not use your @andrew.cmu.edu or other CMU

issued email address.
● Update your course profile and set up Azure

subscription

Google Cloud Platform (GCP) Account

● ONLY IF YOU HAVEN'T DONE SO ALREADY
● Follow the instructions in the primer.
● Receive a $50 coupon on the Sail() platform
● Redeem the coupon

Piazza
● Suggestions for using Piazza

○ Discussion forum for a learning community
○ Contribute good questions and answers

● When you have a (project-specific) problem, follow the order below!
○ Try to solve the problem by yourself (Search, Stack Overflow)
○ Read Piazza questions & answers carefully to avoid duplicates

■ Visit TA OHs: TA office hours are posted on Piazza and
Google calendar

■ Create a piazza post
● Please note:

○ Try to ask a public question if possible
○ Don’t ask a public question about a quiz question
○ Read the Piazza Post Guidelines before asking
○ Show the effort you have made to solve the problem
○ Practice how to communicate effectively in a technical setting
○ The key to effective communication is to provide the full

context.

http://goo.gl/DwR9re
https://piazza.com/class/krupl2icdeo43k?cid=6

Piazza - Provide the full context

● Which project module are you working on?
● Which task/section are you working on?
● If relevant, please provide the information of the cloud account and

resources.
● Example error message in the plain text format (if you are reporting

programmatic issues) or screenshot (if you are reporting UI/UX issues)
○ Please provide example error messages in the plain text format,

NEVER share code/text as screenshots which are not parsable!
○ Use screenshots (only) for UI/UX issues

● How to reproduce?
● Expected behavior v.s. actual behavior
● Environment summary
● What you have tried?

Piazza - Articulate technical questions

• There are common patterns to communicate

effectively in a technical setting.

• Our course not only aims at building your technical

skills, but also training your communication skills.

• We created a template for you to structure your

questions.

https://docs.google.com/document/d/1gtIX0LydMN1hkj8WJ2IpCqgWsGAFqw98xoHvx622p6Y/edit?usp=sharing

Reflecting on Last Week

● AWS, Azure and GCP accounts
● Cloud resources

○ AWS EC2, S3, CloudWatch
○ Azure Compute, Azure Storage
○ GCP Compute, GCP Storage

● Interface
○ Web console, CLI, SDK

● Basic SSH skills
● Jupyter Notebook primer
● Infrastructure as Code (Terraform) primer

○ Read it if you have not done so
○ Required by many projects including Project 1

Reflecting on Last Week (cont.)

In Project 0:
● You experimented with cloud resource provisioning with

multiple cloud service providers.
● You experiment with the cloud-based development and

deployment workflow.
● You quickly studied diverse topics within a short timeframe

(i.e., a week), and transferred your learning to complete
hands-on tasks with real-world scenarios:
○ tools (e.g., cloud platforms, Maven, Terraform, JUnit,

JaCoCo, Jupyter Notebook, Pandas, Linux tools such as
awk and grep, etc.)

○ practices (e.g., test-driven development, code coverage,
encoding-aware I/O, etc.)

○ processes (e.g., budget, tagging and lifecycle
management for cloud resources, etc.)

Programming Experience Expected

● Strong proficiency in at least one of the following, with

some fair comprehension of the others:

○ Java 8

○ Python 3

○ Bash

● Java and Python are required to complete parts of Projects.

● Use the time now to brush up

● Please read Maven primer!

● Do not fear bash/python scripting, it will make your life

easier!

Completing Projects in this Course

● Provision AWS, Azure or GCP Resources
○ Use the Cloud VM Images we provide for the project

○ Tag all instances!

● Plan and monitor your cost
○ Calculate costs before you provision!

● Complete tasks for each project
○ Each project writeup has several sections unlocked by AssessMe

● Submit your work
○ Check the score and feedback in the submission tab on the Sail()

platform

● Terminate all resources when you have verified your score

and kept a copy of your work (e.g., git private repo)

Tagging
● Tag *all* tag-able resources on AWS

○ Before you make a resource request, read the
docs/specifications to find out if tagging is supported

○ We will specify which resources are required to be tagged in
each project

○ Apply the tags during resource provisioning
○ We need tags to track usage, a grade penalty will be applied

automatically if you do not tag!
○ Spot instances

■ Tags of a spot request do NOT propagate to the VMs!
■ AWS EC2 Fleet is the remedy

● Tagging Format
○ Key: project
○ Value: getting-started-with-cloud-computing,

vm-scaling, containers, etc.

Budgets and Penalties

● No proper tags ➔ 10% grade penalty
● Provision resources in regions other than us-east-1 ➔

10% grade penalty
● Budget

○ For P1, each student’s budget is $20
○ Exceeding Budget ➔ 10% project penalty
○ Exceeding Budget x 2 ➔ 100% project penalty (no score)
○ You can see Cost and Penalties in the Sail() platform

● No exceptions
● We give you an opportunity to learn in Project 0

without affecting your grade

● We will enforce these penalties
automatically starting from Project 1

Academic Integrity Violation

● Cheating ➔ the lowest penalty is a 200% penalty &

potential dismissal
○ Other students, previous students, Internet (e.g.

StackOverflow)

○ Do not work on code together

○ This is about you struggling with something and learning

○ Penalty for cheating is SEVERE – don’t do it!

○ Ask us if you are unsure

Compromised Accounts

● People are scanning publicly available files for

cloud credentials.
○ They compromise your account and launch resources

in other regions.

● If you put any of your credentials in files on
○ Github, Dropbox, Google Drive, Box, etc.

○ You are vulnerable to getting your account

compromised.

○ Going over 2x the project budget ⇒ 100% penalty!

Deadlines!

● Hard Deadlines
○ No late days, no extensions

○ Start early!

○ Plan your activities, interviews and other

commitments around the deadlines.

○ No exceptions!

● Projects are typically due on Sundays at 23:59 ET

● Quizzes are typically due on Fridays at 23:59 ET

Deadlines

● Project deadlines
○ On the Sail() Platform

● Quiz deadlines
○ On OLI

Quiz 1 Preparation
● Tests your understanding in Modules 1 and 2

○ Cloud computing fundamentals, service models,
economics, SLAs, security

○ Use the activities in each page for practice.
○ You will be tested on you ability to perform the

stated learning objectives on OLI:

Quiz 1 Logistics

● Quiz 1 will be open for 24 hours, Friday, Sep 10
○ All quizzes are open-book tests.

○ Quiz 1 becomes available on Sep 10, 00:00 AM ET.

○ Deadline for submission is Sep 10, 11:59 PM ET.

○ Once open, you have 120 min to complete the quiz.

○ You may not start the quiz after the deadline has passed.

○ Every 15 minutes you will be prompted to save.

○ Maintain your own timer from when you start the quiz.

○ Click submit before deadline passes. No Exceptions!

✗ ✓ ✓ ✓ ✓ ✗

24 Hours (Quiz Window)

Quiz Duration (2 Hours)

Quiz Open Quiz Deadline

Submit Before Deadline

● When you start the Quiz, you cannot stop the clock.
○ You have 120 minutes to click on submit.

○ You have to keep track of the time yourself.

○ If you don’t click on submit you will not receive a grade.

YOU MUST SUBMIT
WITHIN 120 MINUTES

AND
BEFORE THE DEADLINE

Do not collaborate on quizzes

● In previous semesters, there is always a significant

minority who decided to collaborate on quizzes,

especially at the semester start and when the team

project began.

● We have to emphasize again that unauthorized

collaboration on quizzes is also AIV.

Quality of Service (QoS)

Quantitatively Measure QoS

● Performance: Throughput, Latency

(Very helpful in Project 1 & Team Project)

● Availability: the probability that a system is

operational at a given time (Project 1)

● Reliability: the probability that a system will produce

the correct output

23

QoS Matters

• Amazon found every 100ms of latency cost them

1% in sales (~$1B)

24

Traffic patterns in the real-world

25

● Daily
● Weekly
● Monthly
● Yearly
● ...

The Ferenstein Wire

Cloud Comes to the Rescue!

Scaling!

26

Vertical Scaling

Load
Generator

Small

Medium

Large

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

27

Vertical Scaling Limitation

Load
Generator

WS1

WS2

WS3

● However, one
instance will always
have limited
resources

● Reboot/Downtime

28

Horizontal Scaling

WS

WS

WS

Load
Generator

29

How do we distribute load?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

30

Instance Failure?

Server 1 Server2

Server 3 Server 4

CPU utilization, memory utilization…

Available capacity

31

What You Need

• Make sure that the workload is even on each server

• Do not assign load to servers that are down

• Add/remove servers according to a changing load

How does a cloud service provider help resolve these problems?

Server2

Server3

Server1

Server4

Managed group of servers

Load Balancer

32

Load balancer

● “Evenly” distribute the load
● A simple distribution strategy

○ Round Robin
● Load check
● Health check

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer (ELB)

■ Scale up based on load
○ Elastic, but it still takes time

■ Require the warm-up process

Load Balancer

33

Scaling

Manual Scaling:

● Tend to lead to over-provisioning
and low-utilization

● Tend to lead to insufficient
capacity and lose customers

● Expensive on manpower

Autoscaling:

● Automatically adjust the capacity
based on metrics and rules

● Save cost

34

Amazon Auto Scaling Group

User Load

Auto Scaling Group

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

E
L
B

Elastic Load
Balancer

35

Amazon CloudWatch Alarm

• Monitor CloudWatch metrics for some specified
alarm conditions

• Take automated action when the condition is met

CloudWatch
Metrics Repository

CPU Utilization

Other Metrics… CloudWatch
Alarm

Amazon
CloudWatch

User-Defined
Action

Resources with
CloudWatch

Enabled

36

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

fig. horizontal scaling

Load
Generato

r

WS

WS

WS

37

Project 1 Scaling on AWS
Task 1 - AWS Horizontal Scaling

● Implement Horizontal Scaling in
AWS

● Write a program that launches web
service instances and ensures that
the target total RPS is reached

● Your program should be fully
automated: launch LG → submit
password → Launch WS → start
test → parse log → add more WS...

fig. horizontal scaling

Load
Generato

r

WS

WS

WS

38

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

Auto Scaling
Group

Load
Generator

WS

WS

WS

LB

39

• Programmatically create LG, Application Load Balancer
(ALB), Auto-Scaling Group (ASG) with Auto Scaling
Policies and launch configuration

• Fine-tune Scale-Out and Scale-In policies
• Your solution also needs to be fault tolerant
• Health configurations are important

Elastic Load Balancer

Target Group

Launch Configuration

Auto Scaling Group

CloudWatch Alarm

40

Project 1 Task 2 AWS Autoscaling

Hints for Project 1 AWS Autoscaling
● Do a dry run via the web console to make sure you

understand the workflow
● The Autoscaling test could be expensive!

○ On-demand, charged by per second, do not blindly

launch tests

● CloudWatch monitoring is helpful for policy tuning
● Observe and analyze the pattern, experiment with a

policy, collect data to verify why it achieved a certain
performance, and iterate until you achieve your goal

● You may need a lot of time to understand the AWS
SDK docs

41

Project 1 Hands-on Tasks

● Task 1

○ AWS Horizontal Scaling

● Task 2

○ AWS Auto Scaling

● Task 3

○ AWS Auto Scaling with

Terraform

Auto Scaling
Group

Load
Generator

WS

WS

WS

LB

42

Project 1 Task 3 AWS Autoscaling with
Terraform

● Read the “Infrastructure as Code” primer to

learn about infrastructure automation

● Make sure that terraform plan generates the

required resources

fig. horizontal scaling

43

Penalties for Project 1

Violation
Penalty of
the project

grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $40 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances,
ELB, ASG) for this project with the tag: key=project,
value=vm-scaling

-10%

Submitting your cloud/submission credentials or any Personal
Identifiable Information (PII) in your code for grading -100%

Using instances other than m5.large for Horizontal
scaling/Autoscaling on AWS -100%

44

Penalties for Project 1 (cont.)

Violation
Penalty of
the project

grade

Submitting only executables (.jar, .pyc, etc.) instead of
human-readable code (.py,.java, .sh, etc.)

-100%

Attempting to hack/tamper the autograder in any way -200%

Cheating, plagiarism or unauthorized assistance (please refer to
the university policy on academic integrity and our syllabus)

-200% &
potential
dismissal

45

Project 1 Workflow
● Launch EC2 instance with the VM Image provided by us

○ The Terraform template to provision EC2 in provided in
Project 0

● Complete the Horizontal Scaling Task
● Complete the Autoscaling Task

○ Submit the patterns.pdf file
● Complete the Autoscaling with Terraform Task
● Submit your code for grading

○ Complete the references file for citation
○ Execute submitter to submit your code

● Finish Project Reflection (graded) before the deadline
● Finish Project Discussion (graded) within 7 days after the

project deadline
○ Reply and provide feedback to 3 reflection posts

Grading of Your Projects

● Code submissions are auto-graded
● Scores will be available on the Sail() platform submission tab

○ it may take several minutes for your score to show
○ the submissions table is updated with every submission

● We will grade all the code (both auto and manually graded)
● Hard to read code of poor quality will lead to a loss of points

during manual grading.
● Lack of comments, especially in complicated code, will lead to a

loss of points during manual grading.
● Poor indentation will lead to a loss of points during manual

grading
○ Preface each function with a header that describes what it does

■ Use descriptive variable and function names
■ Use Checkstyle, PEP8, or other tools to check your coding style

● The idea is also NOT to comment every line of code

Reminder: Deadlines

● Sep 10 at 23:59 ET
○ Quiz 1

● Sep 19 at 23:59 ET
○ Project 1 (including Project Reflection)

● Sep 26 at 23:59 ET
○ Project 1 Project Discussion

● ASAP, at the latest 9/13/2021 at 23:59 ET
○ Academic Integrity Course Quiz

