
15-319 / 15-619
Cloud Computing

Weekly Overview 6

Heterogeneous storage on the cloud
October 5, 2021

1

Overview
● Recap of Last Week’s activities

○ OLI Unit 3 - Modules 7, 8, 9

○ Quiz 4

○ Project 2

○ OPE Training Session

○ Team Project, Phase 1, Microservice 1 Checkpoint

● This week’s activities

○ Project 2 Discussion

○ OLI Unit 3 - Modules 10, 11, 12

○ Quiz 5

○ Project 3

○ Team Project, Phase 1, Microservice 1 Final

○ Team Project, Phase 1, Microservice 2 Checkpoint 2

● OLI Unit 3: Virtualizing Resources for the Cloud

○ Module 7: Introduction and Motivation

○ Module 8: Virtualization

○ Module 9: Resource Virtualization - CPU

● Quiz 4

● Project 2, Containers: Docker and Kubernetes

○ Docker and Kubernetes Intro / Embedded Profile Service

deployment

○ Intro to Helm Charts / Deploying MySQL

○ WeCloud Chat Microservices

■ Autoscaling, Multi-Cloud and Fault-tolerance
3

Recap of Last Week’s activities

Recap of Last Week’s activities, cont.

● OPE Training Session

● Team Project, Phase 1, Microservice 1 Checkpoint

4

This Week’s activities
● Project 2 Discussion

● OLI Unit 3: Virtualizing Resources for the Cloud

○ Module 10: Resource virtualization (Memory)

○ Module 11: Resource virtualization (I/O)

○ Module 12: Case Study

● Quiz 5

● Project 3: Heterogeneous Storage on the Cloud
○ Introduction to MySQL

○ Introduction to NoSQL (HBase)

Scenario: Build Your Own Social Network Website

○ Implementing Basic Login with SQL

○ Storing Social Relations as Graph using Neo4j

○ Build Homepage using MongoDB

○ Put Everything Together - Social Network Timeline

○ Caching 5

This Week’s activities, cont.

● Team Project, Phase 1, Microservice 1 Final

● Team Project, Phase 1, Microservice 2 Checkpoint

6

This Week: Conceptual Content

● OLI, UNIT 3: Virtualizing Resources for the Cloud

○ Module 7: Introduction and Motivation
○ Module 8: Virtualization
○ Module 9: Resource Virtualization - CPU
○ Module 10: Resource Virtualization - Memory
○ Module 11: Resource Virtualization – I/O
○ Module 12: Case Study
○ Module 13: Storage and Network Virtualization

7

OLI, Unit 3: Modules 10, 11, 12

● Understand two-level page mappings from virtual memory to
real pages, from real pages to physical memory

● Learn how memory is overcommitted and reclaimed using
ballooning

● Study how I/O requests are intercepted at different
interfaces

● Map these concepts into your practical exploration with AWS

8

OLI Module 10 - Memory Virtualization

● A process that cannot fit into the physical memory? To run or
not to run?

● Page Table
○ Per process
○ Maps virtual addresses to physical addresses

● One level vs. two levels mapping
● Virtual, Real, Physical address spaces
● Memory reclamation
● Ballooning

9

OLI Module 11 - I/O Virtualization

● How?
○ Construct a virtual version of the device
○ Virtualize the I/O activity routed to the device

● I/O Basics
● System call interface, device driver interface, and

operation-level interface

10

OLI Module 12 - AWS Case Study

This Week: Project 3

Heterogeneous Storage on the Cloud

● Introduction to MySQL

● Introduction to NoSQL (HBase)

Scenario: Build Your Own Social Network Website

● Implementing Basic Login with SQL

● Storing Social Relations as Graph using Neo4j

● Build Homepage using MongoDB

● Put Everything Together - Social Network Timeline

● Caching - Social Network Timeline with Cache

11

Project 3

12

Primers for Project 3

● MySQL Primer

● NoSQL Primer

● HBase basics

● MongoDB Primer

13

MySQL Primer

● Introduction to Structured Query Language (SQL)

○ Data Definition Language (DDL)

■ CREATE, ALTER, DROP

○ Data Manipulation Language (DML)

■ Create: INSERT, Read: SELECT, Update: UPDATE, Delete:

DELETE

● Table indexing

○ Single column vs Multi-column indexing

○ Common pitfalls

● Storage Engines

○ MyISAM

○ InnoDB
14

Storage Engines in MySQL

● A storage engine is a software module that a DMS uses to

create, read, update data from a database

● MyISAM and InnoDB

● They have:

○ Different caching mechanisms

○ Different locking mechanisms

○ Are optimized for either read or write

○ More differences are explained in the primer

Experiment, and think of which one to use in the team project

Read the MySQL primer

15

● Non-SQL or NotOnly-SQL

○ Non-relational

● Why NoSQL if we already have SQL solutions?

○ Flexible data model (schemaless, can change)

○ Designed to be distributed (scale horizontally)

○ Certain applications require improved performance at the

cost of reduced data consistency (data staleness)

● Basic Types of NoSQL Databases

○ Schema-less Key-Value Stores (Redis)

○ Wide Column Stores (Column Family Stores) (HBase)

○ Document Stores (MongoDB)

○ Graph DBMS (Neo4j)

NoSQL Primer

16

● It is impossible for a distributed data store to provide all the

following three guarantees at the same time:

○ Consistency: no stale data

○ Availability: no downtime

○ Partition Tolerance: network failure tolerance in a distributed

system

CAP Theorem

17

● Since DB is replicated, how is consistency maintained?

● Since the data is replicated, if one replica goes down, will the

entire service go down?

● How will the service behave during a network failure?

Single Node to Distributed Databases

A database, replicated on two
nodes, Node 1 and Node 2

18

● Only two out of the three are feasible:

○ CA: non-distributed (MySQL, PostgreSQL)

■ Traditional databases like MySQL and PostgresQL have

only one server

■ Don’t provide partition tolerance

○ CP: downtime (HBase, MongoDB)

■ Stop responding if there is partition

■ There will be downtime

○ AP: stale data (Amazon DynamoDB)

■ Always available

■ Data may be inconsistent among nodes if there is a

partition

CAP Theorem

19

Only two at a time

20

HBase basics

● Introduction to HBase

○ HBase Operations

○ HBase Architecture

● HBase Tutorial

○ Set up standalone HBase

○ Creating the HBase Cluster with AWS EMR

○ Creating the HBase Cluster with Azure HDInsight

○ Loading data into HBase

○ HBase Compaction

○ Compression and Data Block Encoding in HBase

○ HBase Data Migration

● HBase Query

● HBase Java API

● Security Best Practice of Hadoop clusters 21

MongoDB Primer

● Compare MongoDB and MySQL

● MongoDB Features

● MongoDB Technicalities

○ Documents

○ Collections

● MongoDB Tutorial to practice:

○ How to import data into MongoDB

○ Some basic queries with Mongo Shell

○ How to Build index to speed up your query

22

● Task 1: Introduction to MySQL

○ Load data, run queries, indexing

○ Plain-SQL vs ORM

● Task 2: Introduction to NoSQL (HBase)

○ Load data, design key, run basic queries

Scenario: Build Your Own Social Network Website using datasets

from Reddit.com: users.csv, links.csv, posts.json

● Task 3: Implementing Basic Login with SQL

○ User authentication system : Azure Database for

MySQL(users.csv)

○ User info / profile : Azure Database for MySQL

● Task 4: Storing Social Graph using Neo4j

○ Follower, followee : Neo4j (links.csv)

Project 3 Overview

23

● Task 5: Build Homepage using MongoDB

○ All user generated comments: MongoDB (posts.json)

● Task 6: Put Everything Together

○ User Timeline: Fanout

● Task 7: Caching

○ Cache the requests with high frequency

Project 3 Overview, cont.

24

● Prepare tables

○ A script to create the table and load data is provided

● Write MySQL queries to answer questions

● Learn JDBC

● Complete MySQLTasks.java

● Aggregate functions, joins

● Statement and PreparedStatement

● SQL injection

● Learn how to use proper indexes to improve performance

Task 1: Introduction to MySQL

25

https://www.yelp.com/dataset_challenge

● business

● checkin

● review

● tip

● user

Dataset for Task 1

26

https://www.yelp.com/dataset_challenge

● Schema
○ The structure of the tables and the relations between tables

○ Based on the structure of the data and the application requirements

● Index
○ An index is simply a pointer to data in a table

○ It is a data structure (lookup table) that helps speed up the retrieval of

data from tables (e.g., B-Tree, Hash indexes, etc.)

○ Based on the data as well as queries

○ Build indexes based on the types of queries you’ll expect

We have an insightful section about the practice of indexing, read it

carefully! Very helpful for the team project

MySQL Indexing

27

● How do we evaluate the performance of a query?

○ Run it

● What if we want/need to predict the performance without

execution?

○ Use EXPLAIN statement

● The EXPLAIN statement on a query predicts:

○ The number of rows to scan

○ Whether it makes use of indexes or not

EXPLAIN statement in MySQL

28

● ORM abstracts the interaction with a DB for you:

○ Maps the domain class with the database table

○ Map each field of the domain class with a column of

the table

○ Map instances of the classes (objects) with rows in the

corresponding tables

Object Relational Mapping (ORM)

29

● Decoupling of responsibilities

○ ORM decouples the CRUD operations and the business logic code

● Flexibility to meet evolving business requirements

○ Cannot eliminate the schema update problem, but it may ease the

difficulty, especially when used together with data migration tools

● Persistence transparency

○ Changes to a persistent object will be automatically propagated to the

database without explicit SQL queries

● Productivity

○ No need to keep switching between your OOP language such as

Java/Python, etc. and SQL

● Vendor independence

○ Abstracts the application from the underlying SQL database and SQL

dialect

Benefits of ORM

30

● The current business application exposes an API that returns the

most popular Pittsburgh businesses

● It is based on a SQLite3 database with an outdated schema

● Your task:

○ Plug the business application to the MySQL database and

update the definition of the domain class to match the new

schema

● The API will be backwards compatible without modifying any

business logic code

ORM Question in the MySQL Task

31

● HBase is an open source, column-oriented,

distributed database developed as part of the

Apache Hadoop project

In this task, you will:

● Launch an HDInsight cluster

● Load data so that it is evenly distributed

across regions

○ Make sure to submit a design.pdf file

with your key design

● Try different commands in the hbase-shell

● Complete HBaseTasks.java using HBase Java

APIs

Task 2: Introduction to NoSQL (HBase)

32

● Rows in HBase are sorted lexicographically by rowkey

● Hotspotting

○ A large amount of client traffic is directed to one/few node/s

○ The rows are divided into different HRegions

○ Each HRegion contains a contiguous subset of rows

○ HRegionServer is responsible for reading and writing

○ Solution: pre-splitting regions

RowKey Design

33

Salting: randomly assign prefix

RowKey Design - Example 1

34

Rowkey

foo0001

foo0002

foo0003

foo0004

Rowkey

a-foo0001

b-foo0002

c-foo0003

d-foo0004

Salting: randomly assign prefix

● Command in HBase shell

> create 'table', ‘example1’', SPLITS=> ['b', 'c', 'd’']

RowKey Design - Example 1

35

Region Start Key End Key Rows

1 b a-foo0001

2 b c b-foo0002

3 c d c-foo0003

4 d d-foo0004

Hashing

RowKey Design - Example 2

36

Rowkey

foo0001

foo0002

foo0003

foo0004

Rowkey

0x1bfe

0x420a

0xab53

0xff98

hash(Rowkey)

Hashing

● Command in HBase shell

> create 'table', 'example2', {NUMREGIONS => 4, SPLITALGO =>

'HexStringSplit'}

RowKey Design - Example 2

37

Region Start Key End Key Rows

1 3fff 0x1bfe

2 3fff 7fff 0x420a

3 7fff bfff 0xab53

4 bfff 0xff98

Task 3 - Task 7: A Social Network Service

38

• Build a social network
similar to Reddit.com

Social Network Architecture

Front-end Server Back-end Server

MySQL
(Azure Database

for MySQL)

Neo4j

MongoDB

3
9

○ Some images in the front-end are broken. No worries as

long as you can get valid responses using “curl” command.

Task 3: Implementing Basic Login
with MySQL

● Designed to managed highly structured data.
○ Authentication data

● Database-as-a-Service (DBaaS)
○ Azure-managed MySQL database

• Cloud vendor is responsible for administrative
tasks

• Users are responsible for optimizing applications
that use database resources

4
0

TDD with Mockito

● Mockito is an open-source testing framework that

allows the creation of test double objects (mock

objects).

● It is used to mock interfaces so that the specific

functionality of an application can be tested without

using real resources such as databases, expensive API

calls, etc.

● You are required to understand the given

implementation, and may use it to quickly debug your

solution for Task 1.
4
1

Task 4: Storing Social Graph using
Neo4j

● Designed to treat the relationships between data as
equally important as the data
○ Relationships are very important in social graphs

● Property graph model
○ Nodes
○ Relationships
○ Properties

● Cypher query language
○ Declarative, SQL-inspired language for describing

patterns in graphs visually

4
2

● Document Database

○ Schema-less model

● Highly Scalable

○ Automatically shards data among multiple servers

○ Does load-balancing

● Allows for Complex Queries

○ MapReduce style filter and aggregations

○ Geospatial queries

Task 5: Build Homepage using MongoDB

43

Task 6: Social Network Timeline
High Fanout in Data Fetching

A single page, requires many data fetch operations

Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., ... & Venkataramani, V.
(2013, April). Scaling Memcache at Facebook. In nsdi (Vol. 13, pp. 385-398).44

Task 6: Social Network Timeline
High Fanout in Data Fetching

45

● Practice writing complex fan-out queries that

span multiple databases:

○ MySQL

○ Neo4J

○ MongoDB

● Fanout and Caching

○ Practice writing complex fan-out queries that

span multiple databases.

○ Also practice using a caching mechanism to

boost your backend!

Task 7: Social Network Timeline with
Cache

46

P3 - Tagging and Budget limit

● This project is on Azure, so apply the following tag
appropriately:

● The project does not have a hard budget limit. Each
student is assigned a single subscription for all the
projects. That being said, the students should still be
careful of the spending since the subscription can get
deactivated if they spend up the entire budget,
particularly when working with HDInsight clusters.

47

P3 - Reminders and Suggestions

● Students are encouraged to work on the Intro to DB

(Task 1 & 2) first, and then Social Network. The Social

Network will require prior knowledge/experience on

Task 1 & 2.

● We discourage installing VSCode Java Language Server

on the VM because it could add heavy loads on the

VM’s CPU and memory which might then cause a OOM

failure when loading large-scale raw data to the

databases. Instead, develop locally, scp to and test on

the VM.

● Use tmux to prevent session timeout which could

immensely enhance the development experience. 48

P3 - Reminders and Suggestions

● In Task 6 and 7, you will use the databases from tasks 3 to 5.

Make sure to have all the databases loaded and ready when

working on Task 6 and 7.

● You can submit one task at a time using the submitter.

Remember to have your Back-end Server VM running when

submitting.

● Make sure to terminate all resources using “terraform

destroy” after the final submission. Double check on the

Azure console that all resources were terminated.

● No AWS instances on your individual AWS account are

allowed, otherwise you will receive warning emails and

penalties
49

● Tag your resources:

○ Key: project, Value: cloud-storage

● An HDInsight cluster is very expensive

○ Exercise caution to plan for the budget

● Be patient:

○ Provisioning an HDInsight cluster takes ~30min

○ Loading data to MySQL takes ~40 minutes

○ Loading data to MongoDB takes ~30 minutes

Project 3 is due in two weeks but please start early because of the

above wait times.

● Remember to delete the Azure resource group to clean up all the

resources in the end. If you leave an HDInsight cluster running and

exceed the budget of the subscription, you will be unable to work on

the future Azure projects.
50

P3 - Reminders and Suggestions, contd.

Upcoming Deadlines

● Project 2 Discussion

○ Due next Sunday, 2021-10-10 23:59 ET

● Quiz 5

○ Due on Friday, 2021-10-08 23:59 ET

● Team Project, Phase 1

○ Microservice 1 Final

○ Microservice 2 Checkpoint

○ Microservice 2 Correctness Bonus

○ Microservice 2 Early Bird Bonus

■ Due next Sunday, 2021-10-10 23:59 ET

51

