
15-319 / 15-619
Cloud Computing

Overview 7

October 12th, 2021

Reflection of Last Week

● Conceptual content on OLI
○ Module 10: Resource virtualization (Memory)
○ Module 11: Resource virtualization (I/O)
○ Module 12: Case Study

● Project theme - Heterogeneous Storage on the Cloud
○ Introduction to MySQL
○ Introduction to NoSQL (HBase)
○ Scenario: Build Your Own Social Network Website
○ Implement Basic Login with SQL
○ Store Social Relations as Graph using Neo4j
○ Build Homepage using MongoDB
○ Put Everything Together - Social Network Timeline
○ Caching

2

This Week

● OPE - Spark Programming
○ Due on Sunday, October 17th, 2021, 11:59PM ET

● Quiz 6 (OLI Module 13)
○ Due on Thursday, October 14th, 2021, 11:59PM ET

● Project 3
○ Due on Sunday, October 16rd, 2021, 11:59PM ET

● Team Project Phase 1 M2 Final + M3 Checkpoint
○ Due on next Sunday, October 24rd, 2021, 11:59PM

ET

3

This Week: Conceptual Content

● OLI, Unit 3: Cloud Infrastructure

○ Module 7: Introduction and Motivation
○ Module 8: Virtualization
○ Module 9: Resource Virtualization - CPU
○ Module 10: Resource Virtualization - Memory
○ Module 11: Resource Virtualization – I/O
○ Module 12: Case Study
○ Module 13: Storage and Network Virtualization

4

5

TEAM PROJECT
Twitter Data Analytics

Team Project Time Table

Phase Deadline (11:59PM ET)

Phase 1 (20%)
- M1
- M2
- M3

(ckpt)

● M1 CKPT (5%): Sun, 10/3
● M1 CKPT Report (5%): Sun, 10/3
● M1 FINAL (10%): Sun, 10/10
● M2 CKPT (5%): Sun, 10/10
● M2 FINAL (50%): Sun, 10/24
● M3 CKPT (5%): Sun, 10/24
● Final Report + Code (20%): Tue, 10/26
BONUSES:
● M1 Early Bird Bonus (5%): Sun, 10/3
● M2 Early Bird Bonus (5%): Sun, 10/10
● M2 Correctness Penalty Waiver: Sun, 10/10
● M3 Early Bird Bonus (5%): Sun, 10/24
● M3 Correctness Penalty Waiver: Sun, 10/24 6

Team Project Time Table
Phase Deadline (11:59PM EST)

Phase 2 (30%)
- M1
- M2
- M3 (full)
- Live Test!

● Live Test on Sun, 11/7

Phase 3 (50%)
- Managed Services

for Microservice 1-3
- Live Test!

● Live Test on Sun, 11/21

7

Recap of M1 and M2
● Microservice 1

○ 21/23 teams made a non-zero score 600s submission
○ 14/23 teams achieved 40,000 RPS throughput

● Microservice 2
○ 12/23 teams made a non-zero score 600s submission
○ 7/23 teams achieved the early-bird bonus

8

Microservice 2 Recap

9

• Start with a single EC2 instance, work with cluster
only when you are confident

• My RPS is low
– Does your program utilizes all CPU core? Make

sure threads / workers are set up properly.
– Profiling. The Primer can be useful.
– Try out different instance types. m6g can have

better performance/cost ratio.
– Try different framework or even language.

• After deploying to cluster, make sure the workload is
evenly distributed across your worker nodes

Microservice 2 Tips

10

https://projects.sailplatform.org/f21-15619/profiling

• My correctness is low
– Does the sender have enough balance to pay the

recipient and the fee?
• How to find PoW?

– PoW can be any random string as long as it
satisfies the hash target

– for i from 0 to infinity:
 pow = string(i)
 hash = cchash(tx_hash+pow)
 if hash < target: return (pow, hash)

Microservice 2 Tips

11

Read M3 Now.
Start ETL Now.

You have two weeks to meet the M3 checkpoint
 Question: Is one weekend enough time for M3?

Hint: No. Start now.

12

Twitter Analytics System Architecture

13

● Building a performant web
service

● Dealing with large scale
real world tweet data

● HBase and MySQL
optimization

M3 - User Recommendation System

Use Case: Recommend User B, C and D when you follow User A on twitter

Three Scores when making recommendation:
• Interaction Score - closeness
• Hashtag Score - common interests
• Keywords Score - match specific interests

Final Score: Interaction Score * Hashtag Score * Keywords Score

Query: GET
/twitter?user_id=<ID>&type=<TYPE>&phrase=<PHRASE>&hashtag=<HASHTAG>

Response:
<TEAMNAME>,<AWSID>\n
uid\tname\tdescription\ttweet\n
uid\tname\tdescription\ttweet

14

Target throughput: 10,000 RPS for both MySQL and HBase

M3 - Filtering

Each line from the provided files is a tweet object

● Malformed JSON Object
● Malformed Tweets
● Each tweet must contain valid

○ Tweet ID
○ Sender’s user ID
○ Timestamp
○ Content
○ At least 1 hashtag

● Tweets not in the required languages
● Duplicate Tweets

15

M3 - Contact Tweets
Given a valid tweet JSON object t.

A contact tweet is a tweet that is either a reply tweet or a retweet.

● A tweet is a reply tweet if t.in_reply_to_user_id is not null.
● A tweet is a retweet if t.retweeted_status is not null.

16

M3 - User Information
Given a valid tweet JSON object t.

User information can appear in t and t.retweeted_status objects.

● For any tweet t, we can find the sender information in t.user
● If the tweet t happens to be a retweet, we can additionally find the

original poster’s information in t.retweeted_status.user

For each user appeared, we can get the timestamp from t.created_at.

After processing all the valid tweets, we can get the latest information of
all users.

Note: For user information with the same timestamp, break the tie by
tweet ID in descending numerical order.

17

M3 - Interaction Score

• Two types of interaction: Retweet and Reply

• Interaction score =
log(1 + 2 * reply_count + retweet_count)

Examples:

1. A replied B 4 times; B retweeted A 3 times
log(1 + 2*4 + 1*3) = 2.485

2. A replied B twice; B replied A once
log(1 + 2*(2+1) + 1*0) = 1.946

3. A retweeted B once
log(1 + 2*0 + 1*1) = 0.693

4. no replies/retweets between A and B
log(1 + 2*0 + 1*0) = 0

18

M3 - Hashtag Score
● same_tag_count = hashtags among all the tweets two users

posted, excluding popular hashtags from the list provided by us.

The final hashtag_score is calculated as follows.

● If same_tag_count > 10,
hashtag_score = 1 + log(1 + same_tag_count - 10).

● Else, hashtag_score = 1

19

For the cases of self-reply
or self-retweet , the
hashtag score will
always be 1.

Note: hashtags are
case-insensitive

M3 - Keyword Score
Counting the total number of matches of phrase and also hashtag (both provided
in the query) across the contact tweets of a specific type. The type is given in
the query, and valid values are [reply|retweet|both].

Matching rule for the phrase: case sensitive match. Example: haha

● hahaha has 2 matches (beware: overlapping matches are possible)
● haHaha has no matches
● Haha bahaha has 1 match

Matching rule for the hashtag: case insensitive exact match. Example:
cloud

Tweet having hashtags #Cloud #CLOUD #CLOUD #cmu
Note that duplicate tags are allowed, thus number_of_matches += 3.

If there are no contact tweets of the type specified in the query,
keywords_score = 0.

Otherwise, keywords_score = 1 + log(number_of_matches + 1).

20

M3 - Final Score and Ordering

Final Score
final_score = interaction_score * hashtag_score * keywords_score

• Keep 5 decimal points of precision rounding half up before ranking
• Ignore user pairs with a final score of 0

Ordering
• Rank by the score in descending order.

– Break ties by user ID in descending numerical order.

For the latest contact tweets between two users, break the tie by tweet ID
in descending numerical order if they have the same timestamp.

21

M3 Roadmap

22
Continued ….

● Use a flowchart as an ETL mind map and code design

● Do the filtering on the first part (part-00000) of the dataset and make sure the
result is exactly the same as the reference answer

● Start ETL on the mini dataset locally or in GCP/Azure with sufficient unit tests
○ Zeppelin can be your good friend
○ Think about what information is necessary for one query
○ Start with a tentative schema and adjust it accordingly
○ Pick some test queries that can help you partially verify for ETL

process
○ Store your ETL result as TSV/CSV files
○ Make use of the mini-ref server

M3 Roadmap (continued)

23

● Start ETL on the entire dataset in GCP/Azure and compare your result against
the reference server.

○ Store your ETL results as TSV/CSV and use tools to import into database
○ E - T - L - Verify with reference server
○ Spot the bug, correct the code and rerun the ETL

■ Can you just rerun the ETL partially? Store intermediate results?
○ Make multiple 600s submissions if you think it’s good enough

● Optimize your implementation to reach the target throughput.
○ Identify the bottleneck with profiling

■ Web framework? Query Processing Logic? DB Schema?
○ If you decide to change the schema (you’re very likely need to)

■ what part of ETL you need to rerun?
■ If the computation takes X hours and loading all the data into

database takes Y hours, how many iterations can you do?
■ Can you accelerate your design iteration?

Spark, Scala and Zeppelin Primers

24

● Primers for Apache Spark/Scala/Zeppelin are now available

● Learn more about Spark in OPE, Project 4 and OLI Module 20

● Spark stores data in memory, allowing it to run an order of

magnitude faster than Hadoop

● Spark is more expressive for some operations

● You can use Spark or Hadoop - it is your choice since you have

total freedom in ETL frameworks

https://projects.sailplatform.org/f21-15619/spark
https://projects.sailplatform.org/f21-15619/scala
https://projects.sailplatform.org/f21-15619/zeppelin

How to help TA to help you

25

● Hint: hint won’t come from nowhere.
○ The more context you provide, the more we can

understand your situation, the more accurate help we can
offer

● Generate context: see Piazza guideline post
● Context for asking correctness improvement:

○ A checklist, flowchart, mind map describing your
understanding

○ Measurements you’ve taken to check each item in the
checklist/flowchart/mindmap
■ For example, “I’ve wrote unit tests for everything in my

checklist”

Reminders on penalties

26

● Self-managed Kubernetes cluster + optional EMR,
consisting of M family instances only, smaller than or
equal to large type

● Other types are allowed (e.g., t2.micro) but only for
testing
○ Using these for final submissions = 100% penalty

● Only General Purpose (gp2) SSDs are allowed for
storage
○ e.g m5d is not allowed since it uses NVMe storage

● AWS endpoints only (EC2/ELB).
● $0.70/hour (MySQL) and $1.10/hour (HBase) applies to

every submission

● Your web service should not cost more than $0.70/hour

(M1, M2 and M3 MySQL) and $1.10/hour (M3 HBase) this includes:
○ EC2 cost (Even if you use spot instances, we will calculate your

cost using the on-demand instance price)
○ EBS cost
○ ELB cost - excluding LCU-hour cost
○ We will not consider the cost of data transfer and EMR software
○ See writeup for details

● AWS total budget of $80 for Phase 1

27

Phase 1 Budget

28

Best Wishes!!!

