
15-319 / 15-619
Cloud Computing

 Overview 8

19th October, 2021

Reflection of Last Week

● Conceptual content on OLI
○ Module 13: Storage and Network Virtualization

● Project 3
● OPE - Spark Programming

2

This Week

● OLI, Unit 4: Cloud Storage
○ Module 14: Cloud Storage
○ Module 15: Case Studies: Distributed File System
○ Module 16: Case Studies: NoSQL Databases
○ Module 17: Case Studies: Cloud Object Storage

● Quiz 7 (OLI Module 14)
○ Due on Friday, October 22nd, 2021, 11:59PM ET

● Team Project, Phase 1
○ Due on Sunday, October 24th, 2021, 11:59PM ET

● Team Project Report, Phase 1
○ Due on next Tuesday, October 26th, 2021, 11:59PM ET

● Project 4 - Iterative processing with spark
○ Due on next Sunday, October 31st, 2021, 11:59PM ET

3

Introduction to MapReduce
• The MapReduce programming model simplifies parallel

processing by abstracting away the complexities involved in
working with distributed systems

• Map: Process the input data in chunks in parallel
• Shuffle and sort
• Reduce: Aggregate or summarize intermediate data in

parallel and output the result

Typical MapReduce Batch Job

• Simplistic view of a MapReduce job

• You write code to implement the following classes
– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output

5

Iterative MapReduce Jobs

• Some applications require iterative processing
• E.g., Machine Learning

• MapReduce: Data is always written to disk

– This leads to added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration

6

Apache Spark

• General-purpose cluster computing framework
• APIs in Python, Java, Scala and R
• Runs on Windows and UNIX-like systems

7

Apache Spark APIs

● There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed

Dataset (RDD)
DataFrame

● Distributed
collection of
JVM objects

● Functional
operators
(map, filter, etc.)

● Distributed
collection of
Row objects

● No compile time
type safety

● Fast, efficient
internal
representations

● Compile time
type-safe

● Fast

8

Datasets

Key to Apache Spark - RDDs

● Resilient Distributed Datasets (RDDs)
● Can be in-memory or on disk
● Read-only objects
● Partitioned across the cluster based on a range or

the hash of a key in each record

RDD1 RDD1’

RDD2 RDD2’

RDD3 RDD3’

Machine B

Machine A

Machine C

RDD Operation
(e.g. map, filter)

9

Operations on RDDs

• Loading data
>>> input_RDD = sc.textFile("text.file")

• Transformation
– Applies an operation to derive a new RDD
– Lazily evaluated -- may not be executed immediately
>>> transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

• Action
– Forces the computation on an RDD
– Returns a single object
>>> print "Number of “abcd”:" + transform_RDD.count()

• Saving data
>>> output.saveAsTextFile(“hdfs:///output”) 10

RDDs and Fault Tolerance

● Actions create new RDDs

● Uses the notion of lineage to support fault tolerance
○ Lineage is a log of transformations

○ Stores lineage on the driver node

○ Upon node failure, Spark loads data from disk to

recompute the entire sequence of operations

based on lineage

11

DataFrames and Datasets

● A DataFrame is a collection of rows
○ Tabular
○ Organized into named columns, like a table in a relational DB

● A dataset is a collection of objects
○ Domain specific
○ Object oriented

12

Operations on DataFrames
• Suppose we have a file people.json
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

• Create a DataFrame with its contents
val df = spark.read.json("people.json")

• Run SQL-like queries against the data
val sqlDF = df.where($"age" > 20).show()
+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

• Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output”)

Note: Parquet is a column-based storage format for Hadoop.

13

Spark Ecosystem
● Spark SQL

○ Process structured data
○ Run SQL-like queries against RDDs

● Spark Streaming
○ Ingest data from sources like Kafka
○ Process data with high level functions like map and reduce
○ Output data to live dashboards or databases

● MLlib
○ Machine learning algorithms such as regression
○ Utilities such as linear algebra and statistics

● GraphX
○ Graph-parallel framework
○ Support for graph algorithms and analysis

14

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Project 4
Iterative Processing with Spark

15

● Task 1: Exploratory Analysis on a graph based
dataset

● Task 2: Create an efficient Spark program to
calculate user influence

● Bonus: Use Azure Databricks to run Task 2

Twitter Social Graph Dataset

● tsv format
● Appx. 10GB of data (do not download)
● Edge list of (follower, followee) pairs

○ Directed
● # of followers distribution → power tail

16

Task 1 Exploratory Data Analysis

● Two parts to Task 1
a. Counting using Zeppelin notebook

■ Find the number of edges
■ Find the number of vertices

b. Find top 100 most-popular users
■ RDD API
■ Spark DataFrame API

17

Task 2: PageRank

● Started as an algorithm to rank websites in search
engine results

● Assign ranks based on the number of links
pointing to them

● A page that has links from
○ Many nodes ⇒ high rank
○ A high-ranking node ⇒ (slightly less) high rank

● In Task 2, we will implement pagerank to find the
rank of each user

18

Basic PageRank

● How do we measure influence?
○ Intuitively, it should be the node with the most followers

19

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices

0.333 0.333

0.333
20

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333 0.333

0.333
21

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333
From Node 2

From Node 1

From Node 1From Node 0

22

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0

23

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.208 0.396

0.396
24

PageRank Terminology
● Dangling or sink vertex

○ No outgoing edges
○ Redistribute contribution equally among all vertices

● Damping factor d
○ Represents the probability that a user clicking on links

will continue clicking on them, traveling down an edge
○ Use d = 0.85

● Isolated vertex
○ No incoming and outgoing edges
○ No isolated nodes in Project 4 dataset

●

Dangling vertex
Isolated vertex

25

Visualizing Transitions

● Adjacency matrix:

● Transition matrix: (rows sum to 1)

26

Task 2: PageRank
Formula for calculating rank

d = 0.85

27

Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

28

Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

This simplifies the formula to

29

Task 2: PageRank
Formula for calculating rank

d = 0.85

30

Task 2: PageRank
Formula for calculating rank

d = 0.85

31

Basic PageRank Pseudocode

val links = spark.textFile(...).map(...).cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey(_ + _)

 .mapValues(sum => a/N + (1-a)*sum)
}

Reference: https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 32

(Note: This does not meet the requirements of Task 2)

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

What you need to do for Task 2

● Run your page rank application on a 10GB
graph data for 10 iterations.

● Using HDInsight cluster on Azure:
○ Use the Terraform template provided
○ Very expensive - 2.6USD per hour

● Scoring for Task 2 has 2 components:
○ 100% correctness for page rank - 30 points
○ Performance optimization (runtime within

30 minutes) - 30 points

33

Pagerank Hints

● Ensuring correctness
○ Make sure total scores sum to 1.0 in every iteration
○ Understand closures in Spark

■ Do not do something like this
val data = Array(1,2,3,4,5)

var counter = 0

var rdd = sc.parallelize(data)

rdd.foreach(x => counter += x)

println("Counter value: " + counter)

○ Graph representation
■ Adjacency lists use less memory than matrices

○ More detailed walkthroughs and sample calculations
can be found here

34

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Optimization Hints

● Understand RDD manipulations
○ Actions vs Transformations
○ Lazy transformations

● Use the Ambari UI
○ Are you utilizing your cluster completely? How can you

change that? Refer optimization hints in the writeup.
● Use the Spark UI

○ Are your RDDs cached as expected?
○ Memory errors - check container logs
○ Parameter tuning applied successfully?
○ Exponential increase in partitions?

● How do you represent the node IDs? Int/String/Long?
● Many more optimization hints in the writeup!

35

Spark UI
• Provides useful information on your Spark programs
• You can learn about resource utilization of your cluster
• Is a stepping stone to optimize your jobs

Status of RDD
actions being
computed

Info about cached
RDDs and
memory usage

In-depth job info

36

General Hints
● Starter code:

○ SparkUtils.scala - Use this for creating SparkSession objects.
● Test out commands on a Zeppelin notebook (refer to the Zeppelin primer)
● Test Driven Development (TDD):

○ Starter code contains a small graph test.
○ Develop and test locally first!
○ Develop and test locally first!
○ Develop and test locally first! HDInsight clusters are expensive
○ Add more test cases to check robustness.
○ Each submission can take anywhere from 6 min to an hour to run on

the cluster.
● When in doubt, read the docs!

○ SparkSQL
○ RDD

37

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Bonus Task - Databricks

● Databricks is an Apache Spark-based unified analytics
platform.

● Azure Databricks is optimized for Azure
○ Software-as-a-Service

● One-click setup, an interactive workspace, and an
optimized Databricks runtime

● Optimized connectors to Azure storage platforms for
fast data access

● Run the same PageRank application (in Task 2) on
Azure Databricks to compare the differences with
Azure HDInsight

38

How to change your code?
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {
 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "wasb:///pagerank-output"
 val iterations = 10

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

39

How to change your code?
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "dbfs:/pagerank-output"
 val iterations = 10
 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

40

What you need to do for bonus?

● You can only get bonus (10 points) when:
○ 100% correctness
○ Runtime under 30 minutes on Databricks

● Copy your code to a Databricks notebook:
○ Do not create or destroy SparkSession objects
○ Change the output to DBFS instead of WASB

● Create a cluster and job using databricks-setup.sh
● Submitter takes in a job ID
● Don’t forget to destroy resources after you are done!

41

42

Best Wishes!!!

