
15-319 / 15-619
Cloud Computing

Weekly Overview 10
November 2nd, 2021

Overview
• Last Week’s Reflection

– Project 4
– OLI Module

• Module 15: Case Studies: Distributed File Systems
• Module 16: Case Studies: NoSQL Databases
• Module 17: Case Studies: Cloud Object Storage

• This week’s schedule
– Phase 2

• Deadline Sunday, Nov 07, 23:59:59 ET
– OLI Module

• Module 18: Introduction to Distributed Programming for the Cloud
• Quiz Deadline Friday, Nov 05, 23:59:59 ET

– Project 5
• Deadline next Sunday, Nov 14, 23:59:59 ET

Big Data Processing

• Project 4
– Iterative Programming Using Apache Spark

• Project 5
– Stream Processing using Kafka & Samza

Stream vs. Batch Processing

● Batch processing
○ Data parallel, graph parallel
○ Iterative, non-iterative
○ Runs once in few hours/days
○ Historical data analysis
○ Not well suited for real time events streams

● Stream processing
○ Process events as they come
○ Real time decision making
○ Sensor streams/web event data

Typical Batch Processing Job

• Input is collected into static “batches” and
processed holistically
– Represents a single point in time

• Output is consumed sometime later
– Data (analysis) retains “value” with time

HDFS Hadoop/Hive HDFSInput Output

Typical Stream Processing Job

• Data is processed immediately*
– *Upon queueing

• The processed data is available to downstream
consumers for real time decision/analytics
Stream 1

Stream N

Stream 2
Stream processing job Stream

consumer

Components of a Stream Processing Job

• An event producer - Sensors, web logs, web events
• A messaging service - Kafka, RabbitMQ, ActiveMQ
• A stream processing framework - Samza, Storm,

Spark Streaming

Sensor data

Web events

Web logs

Messaging
service
(Kafka,
RabbitMQ,
ActiveMQ)

Stream processing
framework (Samza,
Spark Streaming,
Storm)

Messaging
service
(Kafka,
RabbitMQ,
ActiveMQ)

Apache Kafka

• A distributed messaging system developed at
LinkedIn.

8

Semantic partitioning in Kafka

● Each topic (stream) is partitioned for scalability across all
nodes in the Kafka cluster

● Default partitioning attempts message load balancing
● Streams can also be partitioned semantically by user - key

of the message
● All messages with the same key arrive to the same partition
● Fault-tolerance: Replication

○ One leader and zero/more followers
○ Replication factor
○ ISR (in-sync replicas)

9

Apache Samza

● Stream processing framework developed at LinkedIn
● Consists of 3 layers:

○ streaming, execution and processing (Samza) layer
● Most common use: Kafka for streaming, YARN for

execution

10

Partitioning in Apache Samza

● Programmer uses the Samza API to perform
stream processing

● Each partition in Kafka is assigned to a single
Samza task instance

11

Stateful stream processing in Apache Samza

• Calculate sum, avg, count, etc.
• State in remote data store? - slow
• State in local memory? - machine might crash
• Solution - persistent KV store provided by Samza

– Changes to KV store persisted to a different stream
(usually Kafka) - replay on failure

– RocksDB currently supported as a persistent
KV store
• You MUST use a persistent KV store for P5!

12

Kafka and Samza, Together

13

Project 5 - NYCabs (NYC based Taxi Service)

• Stream Processing with
Kafka/Samza
– Stream 1: Car GPS coordinates
– Stream 2: Riders

• Task:
– Match riders with drivers to

minimize travel time & other
constraints

Project 5 - Task 1

● Simulate the scenario that the drivers update their
locations on a regular basis as they move in the city and
the clients request rides at some time.

● Data
■ Tracefile -> Two streams
■ Type:

● DRIVER_LOCATION -> driver_locations stream
● LEAVING_BLOCK, ENTERING_BLOCK,

RIDE_REQUEST, RIDE_COMPLETE
-> events stream

Project 5 - Task 1

• You will run your producer program on your student AMI
instance.

• The producer program will publish the data into Kafka
brokers.

• The submitter for Task 1 is located on the student AMI
instance.

Project 5 - Task 2

• Use the same producer program used in Task 1.
• Find the best match for a ride request with a driver

located in the same block as the rider based on
published data.

Project 5 - Task 3

• Find the best advertisement to place for a specific user.
• Utilize BOTH static data(user profile, health status and

interests) and stream data to make this decision.

Project 5 - Bonus Task

• Find the advertisement price that a restaurant is
paying to NYCabs and the advertising company.

• Write at least 2 unit test test cases.

Project 5 - Debugging

• Debugging (IMPORTANT!)
– Use the YARN UI
– Output a kafka stream for debugging
– Yarn application commands

• yarn application -list
– YARN container logs

• on the machine where the YARN container is running
– Read the debugging section in the primer carefully!
– Include the error message when you post on Piazza!

Thank you!

