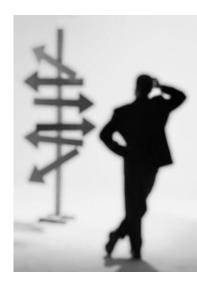
CS15-319 / 15-619 Cloud Computing

Recitation 1 Course Overview and Introduction January 12 & 14, 2015

http://www.cs.cmu.edu/~msakr/15619-s16/


Outline

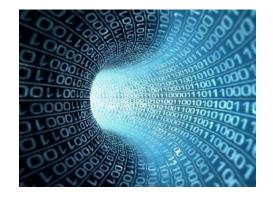
- What is the course about?
- What is an online course?
- Administrivia
- A couple of demos

So What is Cloud Computing?

Data and Decision Making

- Analyzing data reflects reality
- <u>Walmart</u>: hurricane warning
 - Stock beer and strawberry pop-tarts
 - 7x increase in sales during large storms
- <u>Government</u>: resource allocation decisions
 - Data mining in Maryland \rightarrow crime hotspots
 - Shuffle resource allocation, more to hotspots
 - violent crime down by 25%
 - \$20 million saved in the city of Baltimore

Data Science


- Extraction of knowledge from data
- Employs statistical, machine learning and data mining techniques
 - Look for trends, patterns or anomalies in the data
- Affects research in many domains
 - Business, Economics and Finance
 - Biological Sciences and Bioinformatics
 - Social Sciences and Humanities

An Increase in Data Capture

- Physical Sensors and Sensor Networks

 Environmental, safety, transportation
- Social Media Interactions
 - Facebook, Twitter, Instagram
- Public Video and Image Capture

 Surveillance, mobile phones, ...
- Customer Spending Habits
 - Loyalty programs and purchase data

What Happens in an Internet Minute?

What is Big Data?

- Big Data
 - Volume, Velocity, Variety, Veracity
 - Data of next year >> data of this year
- Many Challenges
 - Store, share, analyze, search, transfer, visualize, and secure
- Traditional IT systems are insufficient

we need... Large Scale Systems

Large Scale System Challenges

- Lengthy procurement cycles
- Lengthy deployment effort
- Costly power and cooling
- Costly systems administration
- Low utilization
- Costly disaster recovery

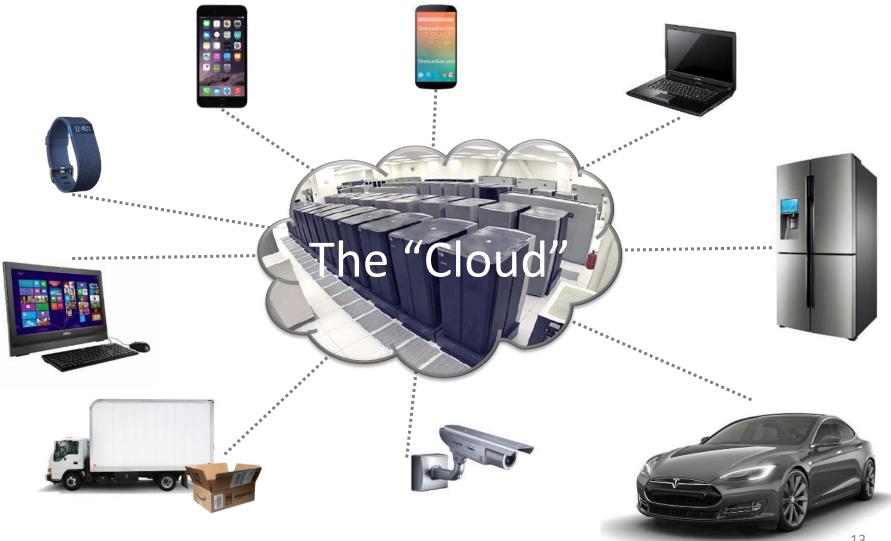
Evolution of Computing

"Cloud Computing is the transformation of IT from a product to a service"

Evolution of Electricity

Innovation New Disruptive Technology

Product Buy and Maintain the Technology


Service Electric Grid, pay for what you use

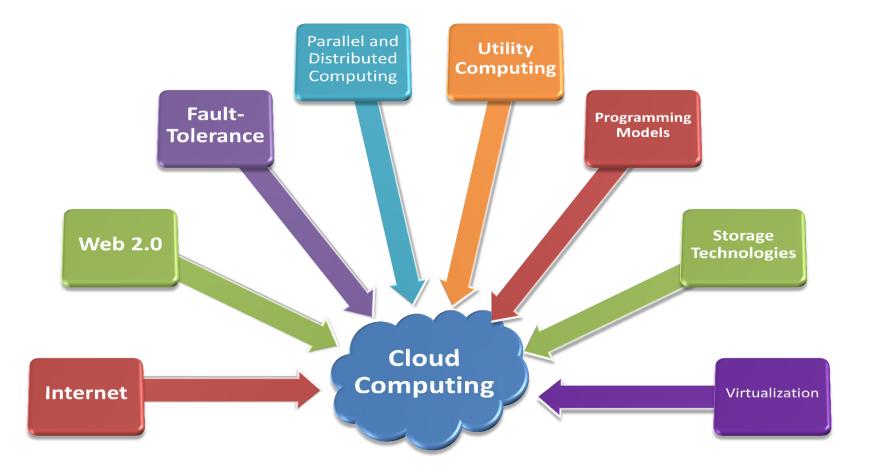
A Cloud is ...

 Datacenter hardware and software that the vendors use to offer the computing resources and services

The Cloud

... for a more complete definition!

Cloud Computing is the delivery of computing as a **service** rather than a **product**,


whereby shared resources, software, and information are provided to computers and other devices,

as a **metered service** over a **network.**

Enabled by Maturing Technologies

So... how would you transform information technology into a Service?

How to Transform IT to a Service?

- Connectivity
 - For moving data around
- Interactivity
 - Seamless interfaces
- Reliability
 - Failure will affect many
- Performance
 - Should not be slower
- Pay-as-you-Go
 - No upfront fee

- Ease of Programmability
 - Ease of development of complex services
- Manage Big Data
- Efficiency
 - Cost
 - Power
- Scalability & Elasticity
 - Flexible and rapid
 response to changing user
 needs

How to Transform IT to a Service?

Connectivity Internet — For moving data around

Interactivity Web 2.0 – Seamless interfaces

Fault-Tolerance

PParallel / Distributed – Shou Systems lower

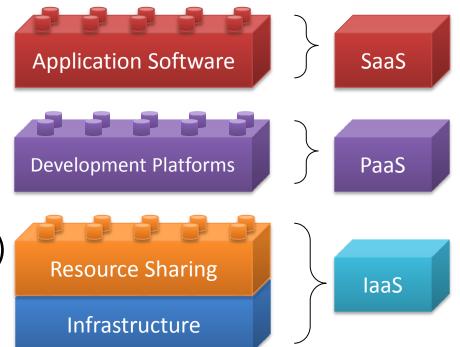
Pay-as-you-Go <u>Utility Computing</u> Ease of Programmabili Programming Model complex services

NStorage Technologies

Efficiency

- Cost

Virtualization and Resource Sharing Technologies


response to changing user

needs

Cloud Building Blocks

Cloud services are available in various forms, corresponding to the layer of abstraction desired by the user

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (laaS)

Software as a Service (SaaS)

- Software is delivered through the internet over a browser or mobile application
- Replace desktop software with cloud-based versions
- Webmail, Productivity Software, ERP, CRM etc.
- Centrally managed, globally available, automatically updated

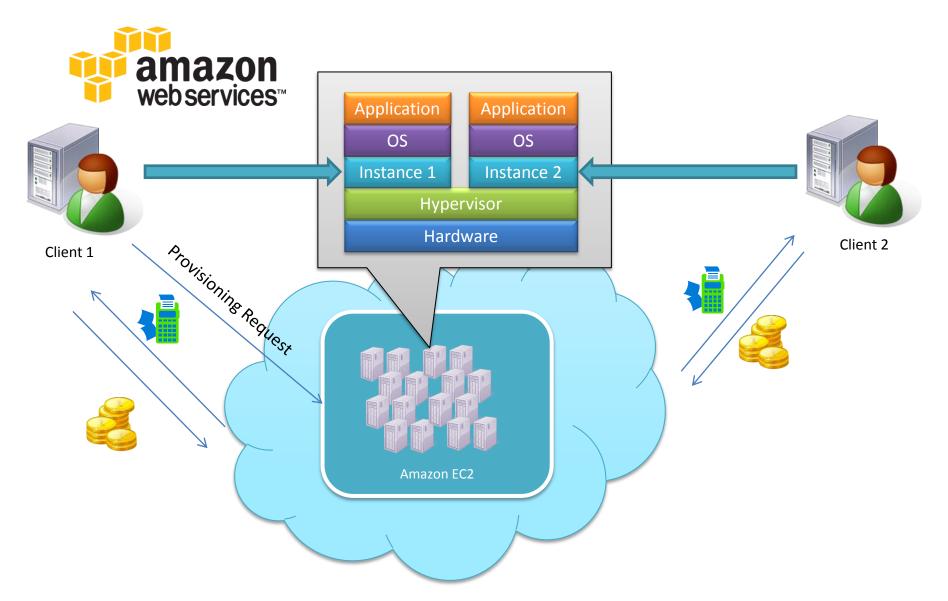
Adobe[®] Creative Cloud

Platform as a Service (PaaS)

- Tools and APIs to develop and deploy cloud-based applications
- Create customized SaaS in the form of Web or mobile applications

Infrastructure as a Service (laaS)

- Compute, storage and network resources bundled in the form of virtual machines
- Fully flexible in terms of software and environment


Windows Azure

Infrastructure as a Service

Benefits of Cloud Computing

Risks and Challenges

Service Level Agreements and Objectives (SLA/SLO)

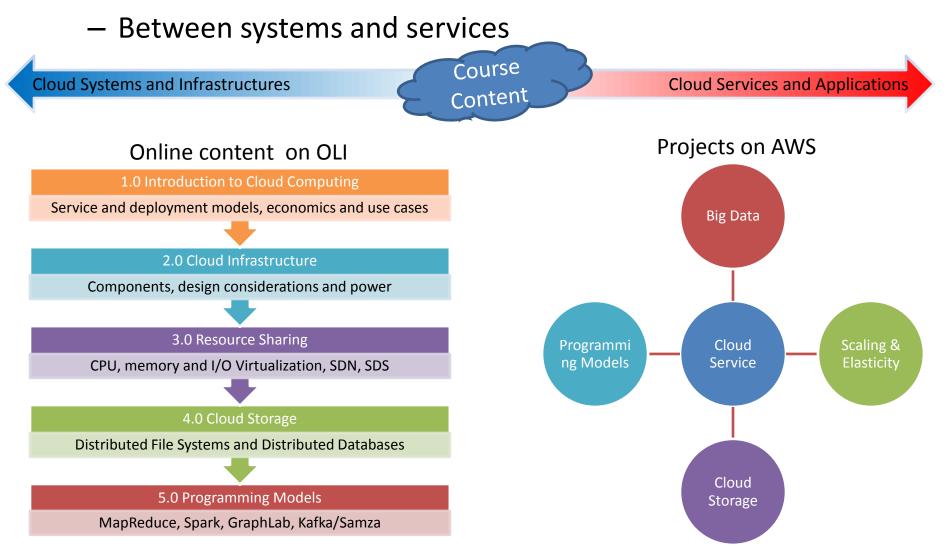
 SLA: Contract between cloud providers and users to define expected service

Service availability and delivery

- Payment terms, bonuses and penalties for service
- SLO: Individual performance/service metrics regarding service delivery defined in the SLA
- Auditing: monitor resources to enforce SLOs and SLAs

Cloud Use Cases: Start-ups

- Infrastructure on demand
- Save money on data center real estate, servers, power and cooling
- Saving in capital expenditure which could be used to drive other areas of business growth
- Scale infrastructure as the business grows
- Levels the infrastructure playing field with established companies


Cloud Computing

- Applications
- Development Platforms
- Elasticity
 - APIs to enable automation, Alarms, protocols, triggers, etc...
- Sharing mechanisms
 - Virtualization, SDX, ...
- Distributed systems
 - Programming models
 - Storage
- Data centers

What is this course about?

Applied aspects of cloud computing

Course Objectives

Students will learn:

- the fundamental ideas behind **Cloud Computing**;
- the basic ideas and principles in cloud infrastructure, data center design and management; cloud software stack and software deployment on the cloud
- the resource sharing and virtualization techniques that serve in offering software, computation and storage services on the cloud; Software Defined Networks (SDN) and Software Defined Storage (SDS);
- about cloud storage technologies and relevant distributed file systems, NoSQL databases and object storage;
- the variety of **programming models** and develop working experience in three of them.

Units on OLI

Unit #	Title	Modules and Description			
1	Introduction	Definition and evolution of Cloud Computing			
		Enabling Technologies			
		Service and Deployment Models Popular Cloud Stacks and Use Cases Benefits, Risks, and Challenges of Cloud Computing			
		Economic Models and SLAs			
		Topics in Cloud Security Quiz 1, Jan 22, 2016			
2	Cloud Infrastructures	Historical Perspective of Data Centers			
		Datacenter Components: IT Equipment and Facilities			
		Design Considerations: Requirements, Power, Efficiency, & Redundancy			
		Power Calculations and PUE			
		Challenges in Cloud Data Centers			
		Cloud Management and Software Deployment Considerations			
3	Virtualization	Virtualization (CPU, Memory, I/O)			
		Case Study: Amazon EC2			
		Software Defined Networks (SDN)			
		Software Defined Storage (SDS)			
4	Cloud Storage	Introduction to Storage Systems			
		Cloud Storage Concepts			
		Distributed File Systems (HDFS, Ceph FS)			
		Cloud Databases (HBase, MongoDB, Cassandra, DynamoDB)			
		Cloud Object Storage (Amazon S3, OpenStack Swift, Ceph)			
6	Programming Models	Distributed Programming for the Cloud			
		Data-Parallel Analytics with Hadoop MapReduce (YARN)			
		Iterative Data-Parallel Analytics with Apache Spark			
		Graph-Parallel Analytics with GraphLab 2.0 (PowerGraph)			

Projects

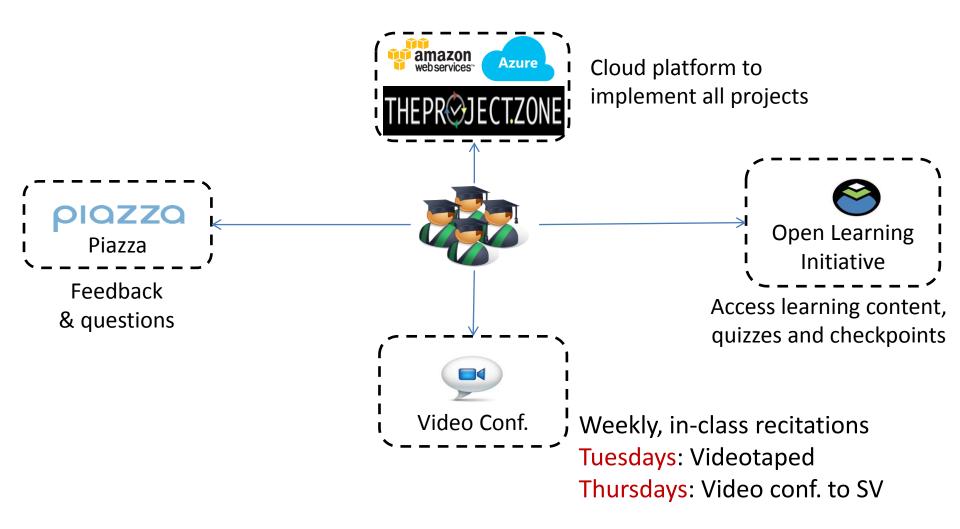
- Four Individual Projects (all students):
 - 0. Primers and PO (Due Sunday, January 17, 2016)
 - 1. Big Data Analytics
 - 2. Scalability, Elasticity and Failure
 - 3. Cloud Storage
 - 4. Analytics Engines for the Cloud
- One Team Project, Twitter Analytics Web Service (15-619 students, extra 3-units)
 - One multi-week team project to build a complete web service

What this course is not about

- Building Cloud Stack Modules

 OpenStack
- Cloud Software Development
 - SaaS software engineering
- Distributed Systems
 - Synchronization, Consistency, ...
- Operating Systems
 - Developing a hypervisor
- Networks
 - Routing and switching protocols

Outline


- What is the course about?
- What is an online course?
- Administrivia

Carnegie Mellon Global Course

Carnegie Mellon University

			CMU-SV	CMU-P • CMU-R
Location	Sections	Students	Teaching Staff	• CMU-A
CMU Pittsburgh	A & B	285	20	
CMU Rwanda	С	2	1	Please move to the section for your campus
CMU Adelaide	D	20	1	ASAP
CMU Silicon Valley	E	49	4	

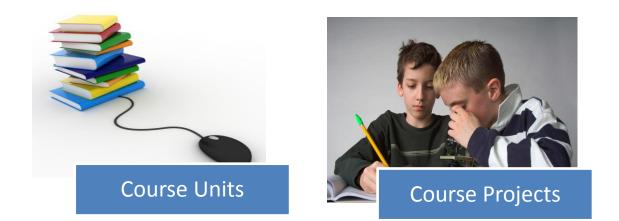
Online Course Engagement Model

Expectations

- Real world practical experience
 - Learn on your own
 - Languages, API, debugging
 - Overcome challenges
 - Deal with uncertainty
- Self paced learning
- Using experimental tools
 Bleeding edge comes with risks

Outline

- What is the course about?
- What is an online course?
- Administrivia


Target Audience

- Technical Majors
- Undergraduate Juniors / Seniors

- Pre-requisites:

- 15213 Introduction to Computer Systems
- Graduate Students
 - Experience:
 - Unix, scripting, python, & java

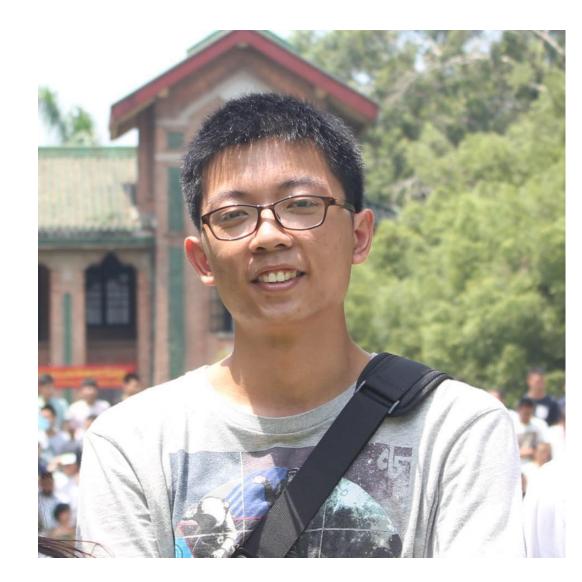
Course Organization

Getting Help

- TAs in Adelaide, Pittsburgh & Silicon Valley
- Piazza
 - Email does not scale
 - Discussion forum to support each other
- Recitations
 - Tuesdays (recorded)
 - At 8AM in GHC 4307 (GHC 4401 for the first recitation only)
 - Thursdays (video conferenced to SV)
 - At 4:30PM in GHC 4307 (1:30PM in SV 211)
 - First 3 weeks only, afterwards only when needed
- Office Hours
 - Check Piazza for Office Hour schedule

Teaching Staff

- Majd Sakr
 - GHC 7006
 - msakr@cs.cmu.edu
 - Office Hours
 - Tuesdays, 3-4pm (Pittsburgh)


Chaskiel Grundman

• Di Xiao

• Jinhong Chen

• Kevin Xu

• Lee Yu

• Lei Sun

• Mengyun (Maggie) Yang

• Mrigesh Kalvani

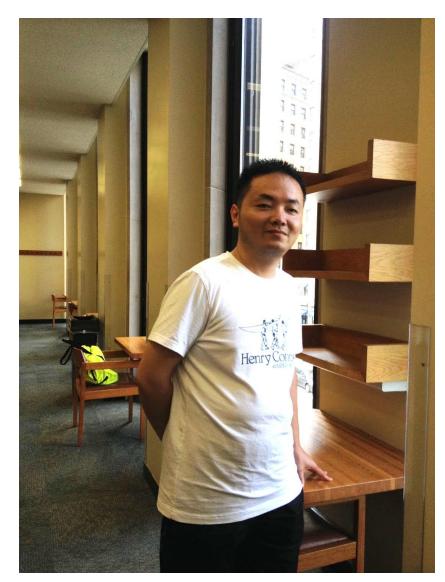
• Ran (Ryan) Xian

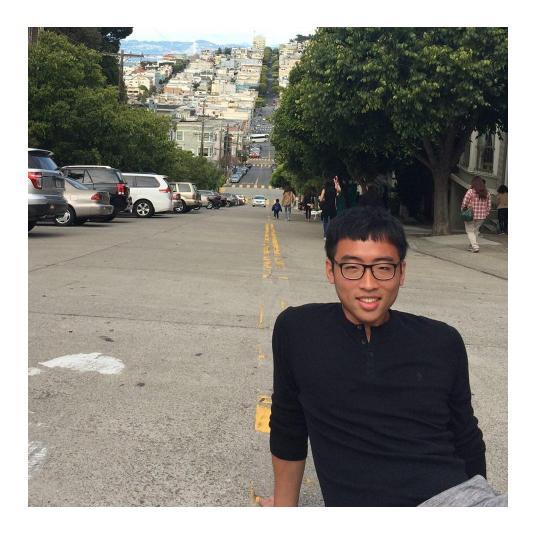
• Ru Jia

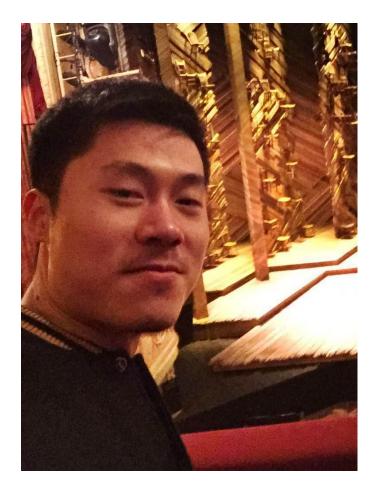
• Ruirui (Mavis) Xiang

• Suhail Rehman

• Shitao Weng


• Wei Luo


• Xingchi Jin

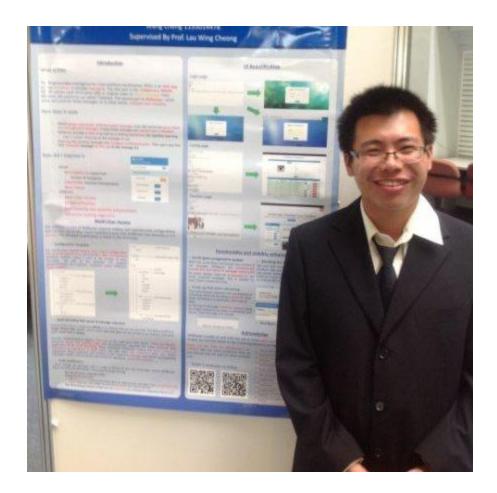

• Yang Wang

• Yang Wu

• Yang Zhang

• Yiming Zang

• Yishuang Lu


Silicon Valley: Teaching Assistant

• Chrysanthi Vandera

Silicon Valley: Teaching Assistants

• Cheng Wang

Silicon Valley: Teaching Assistant

• Madhur Shrimal

Silicon Valley: Teaching Assistant

• Zhengyi (Julie) Wang

Adelaide: Teaching Assistant

• Xiaoyu He

Online Course Content - OLI

Course content is on the Open Learning Initiative:

- Students are automatically registered
- Access to OLI is through Blackboard
 - blackboard.andrew.cmu.edu
- Check if Flash is installed
- Provide feedback on OLI
 - Bottom of each page
 - End of each module
- Do not copy or share content

🚫 Open L	earning Initiat	ive		My Courses	Hello, Majd [sign out]
	her education through the science of le			Help	
yllabus: S16-O	Cloud Computing	g (15319/1561	9): Jan - May 20	016	
structor: Majd Sakr <u>(ms</u>	akr@ANDREW.CMU.EDU)				
Syllabus	Roster	Gradebook	Unscored Activities		
fara yay bagin. Tast an	d Configure your system fo	where with this service			
	<u>d Configure</u> your system fo	or use with this course.			
loud Computing					
ssignment				Status	
JNIT 1: Introduction to	Cloud Computing				
Module 1: Cloud (Gradebook) (Lear	Computing Overview ning Dashboard)				
Module 2: Econo (Gradebook) (Lear	mics, Benefits, Risks, Cha ning Dashboard)	llenges and Solutions			
Quiz 1: Introduct	ion to Cloud Computing		Checkpo	int Not yet assign Due date TBD	
JNIT 2: Cloud Infrastruc	ture				
Module 3: Data C					
Module 4: Data C	enter Components ning Dashboard)				
Quiz 2: Data Cen	ters- Infrastructure, Facilit	ies and Components	Checkpo	int <u>Not yet assign</u> <u>Due date TBD</u>	
Module 5: Cloud					
Module 6: Cloud	Software Deployment Con ning Dashboard)	siderations			
Quiz 3: Data Cen	ter : Software Stack and Pi	rogramming	Checkpo	int Not yet assign Due date TBD	
JNIT 3: Virtualizing Res	ources for the Cloud				
Module 7: Introd	uction and Motivation				
Module 8: Virtua	ta ata a				

TheProject.Zone

Course projects are on https://TheProject.Zone:

- Learn through repetitive attempts and feedback
- Students are automatically registered
- Access through browser
 - Not mobile friendly yet
- Work in progress
 - We will encounter bugs
 - Provide feedback on Piazza
 - Please be patient

J		1-00#8	
16-15619 Cloud Comput: ×		(codia	
C Attps://theproject.zone/student/overview/14/			☆ 9
HEPR DECTZONE S16-156 S16-15619 Cloud Compu Computing course.		Gradebook msakr@andre	
Primers Short tutorials on cloud-related topics			~
Module	Open time	Deadline	
Account Setup Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Amazon Web Services Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Microsoft Azure Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Secure Shell (SSH) Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Project Logistics Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Azure API Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Amazon Web Service API Upcoming	01/11/2016 00:01 -0500	01/17/2016 00:01 -0500	
Project 0 Exploring the cloud			~
Module	Open time	Deadline	
AWS Playground Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Azure Playground Upcoming	01/11/2016 00:01 -0500	01/17/2016 23:59 -0500	
Project 1 Big Data Analytics			~
Module	Open time	Deadline	
Sequential Programming Upcoming	01/18/2016 00:01 -0500	01/24/2016 23:59 -0500	
Parallel Programming using EMR Upcoming	01/25/2016 00:01 -0500	01/31/2016 23:59 -0500	
Project 2 Scaling, Elasticity and Failure			>
Project 3 Cloud Storage			>

Syllabus

- Updated on webpage
- Provides details on:
 - Course Objectives
 - Learning Outcomes
 - Policies
 - Grading
 - Tentative Schedule

15-319/15619: CLOUD COMPUTING

COURSE DESCRIPTION & SYLLABUS

CARNEGIE MELLON UNIVERSITY SPRING 2016

OVERVIEW

Title: Cloud Computing Units: 15-319 is 9 units and 15-619 is 12 units. Pre-requisites for undergraduate students: A "C" or better in 15-213. Pre-requisites for graduate students: Knowledge of computer systems, programming and debugging, with a strong competency in at least one language (such as Java/Python), and the ability to pick up other languages as needed.

OLI Course: http://oli.cmu.edu (accessed through https://blackboard.andrew.cmu.edu) The Project Zone: https://TheProject.Zone Piazza: http://piazza.com/cmu/spring2016/1531915619/home

Recitation:

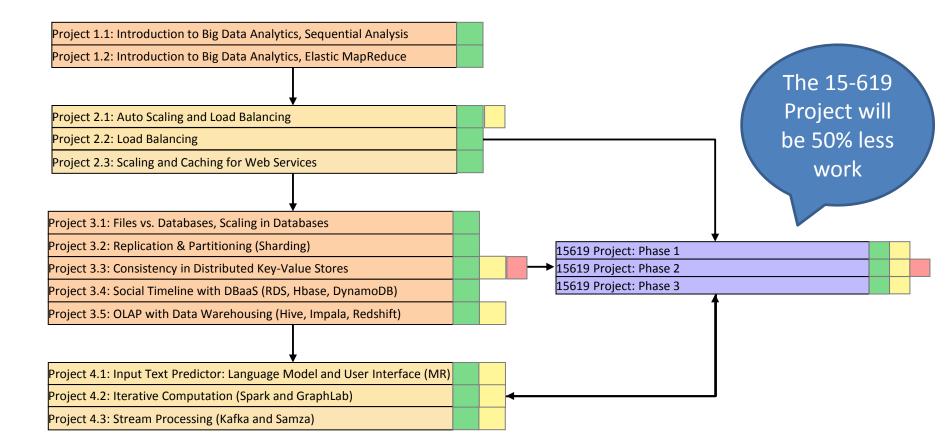
- 1. Tuesday, 8:00 AM 8:50 AM, GHC 4307 (Videotaped)
- 2. Thursday, 4:30 PM 5:20 PM, GHC 4307 (First few weeks and when needed)

Teaching Staff:

Prof. Majd F. Sakr msakr@cs.cmu.edu GHC 7006, +1-412-268-1161 Office hours: Tuesday, 3-4pm (Pittsburgh)

TAs in Pittsburgh typically hold office hours in GHC $5^{\rm th}$ Floor Teaching Commons. The TA office hours are posted on Piazza:

- Jinhong Chen < jinhongc@andrew.cmu.edu>
- Chaskiel Grundman < cg2v@andrew.cmu.edu>
- Xingchi Jin < xingchij@andrew.cmu.edu>
- Mrigesh Kalvani <mkalvai@andrew.cmu.edu>
 Wei Luo <weiluo@andrew.cmu.edu>
- Mohammed Suhail Rehman <suhailr@andrew.cmu.edu>
- Lei Sun <leis1@andrew.cmu.edu>
- Chrysanthi Vandera <cvandera@andrew.cmu.edu>


- Yang Wang < yangw3@andrew.cmu.edu>
- Yang Wu <yangwu@andrew.cmu.edu>
- Ruirui Xiang <ruiruix@andrew.cmu.edu>
- Di Xiao <dxiao1@andrew.cmu.edu>
- Kevin Xu <klx@andrew.cmu.edu>
- Mengyu Yang <mengyuy@andrew.cmu.edu>
 Liruoyang Yu <liruoyay@andrew.cmu.edu>
- Yiming Zang <yzang@andrew.cmu.edu>
- Yang Zhang <yang@andrew.cmu.edu>
 Yang Zhang <yangz4@andrew.cmu.edu>
- Ying Zhang <yingzha3@andrew.cmu.edu>

Tentative Schedule

- Schedules:
 - Quizzes on OLI
 - Projects on
 TheProject.Zone

Week	Monday	OLI Content	Projects	15-619 Project	Quizzes
1	1/11/2016	Unit 1, Module 1	Primers/P0 (Jan 17)		
2	1/18/2016	Unit 1, Module 2	P1.1 (Jan 24)		Q1 (Jan 22)
3	1/25/2016	Unit 2, Module 3, 4	P1.2 (Jan 31)		Q2 (Jan 29)
4	2/1/2016	Unit 2, Module 5, 6	P2.1 (Feb 7)		Q3 (Feb 5)
5	2/8/2016	Unit 3, Module 7, 8, 9	P2.2 (Feb 14)		Q4 (Feb 12)
6	2/15/2016	Unit 3, Module 10, 11, 12	P2.3 (Feb 21)		Q5 (Feb 19)
7	2/22/2016	Unit 3, Module 13	P3.1 (Feb 28)	Project Out (Feb 24)	Q6 (Feb 26)
8	2/29/2016	Unit 4, Module 14	P3.2 (Mar 6)		Q7 (Mar 3)
9	3/7/2016	Spring Break			
10	3/14/2016	Unit 4, Module 15	P3.3 (Mar 20)	Phase 1 Due (Mar 16)	Q8 (Mar 18)
11	3/21/2016	Unit 4, Module 16, 17	P3.4 (Mar 27)		Q9 (Mar 25)
12	3/28/2016	Unit 5, Module 18	P3.5 (Apr 3)	Phase 2 Due (Mar 30)	Q10 (Apr 1)
13	4/4/2016	Unit 5, Module 19	P4.1 (Apr 10)		Q11 (Apr 8)
14	4/11/2016	Unit 5, Module 20, 21	P4.2 (Apr 17)	Phase 3 Due (Apr 13)	
15	4/18/2016	Unit 5, Module 20, 21	P4.3 (Apr 24)		Q12 (Apr 22)

Projects: Timeline and Dependencies

Grading

Course Elements	#	Weight
Projects	4 or 5	80%
OLI Unit Checkpoint Quizzes	12	20%

- All projects are equal weight
 - ~6% per module (13) for 15-319
 - 5% per module (16) for 15-619
- Weekly quizzes (12 in total)

– equal weight

Pass/Fail option is no longer available for this course

Academic Integrity

It is the responsibility of each student to produce her/his own original academic work.

- Individual work:
 - Weekly Project Modules
 - Unit Checkpoint Quizzes
- Team work:
 - 15-619 Project

Read the <u>university policy on Academic Integrity</u>.

The Penalties are Severe

 Cheating leads to several students being dismissed from the university every semester

LET IT NOT BE YOU!

What is Cheating

- Sharing code or other electronic files either by copying, retyping, looking at, or supplying a copy of any file.
 - Other students, github, stackoverflow, anywhere on the internet,...
- Copying answers to any checkpoint quiz from another individual, published or unpublished written sources, and electronic sources.
- Collaborating with another student or another individual on Unit Checkpoint Quizzes or Project Modules.
- Sharing written work, looking at, copying, or supplying work from another individual, published or unpublished written sources, and electronic sources.
- Collaboration in team projects is strictly limited to the members of the team.
- ...(read the syllabus and the university policy)

Minimum Cheating Penalty

Must be worse than not submitting anything
 – Example impact of a -100% penalty on a project

	Perfect Score	Not submitting one	Cheating on one
Assessment #1	20%	20%	20%
Assessment #2	20%	20%	20%
Assessment #3	20%	20%	20%
Assessment #4	20%	20%	20%
Assessment #5	20%	0%	-20%
Total	100%	80%	60%

Course Administration

- Students are automatically registered on OLI through blackboard.andrew.cmu.edu
- A *single* Piazza course page is created
 We manually register students to Piazza
- Schedule of units and quizzes is on OLI
 - Content weekly quizzes are due on Fridays
- Schedule of weekly projects is on TheProject.Zone
 - Weekly project modules are due on Sundays

Special Note on Amazon EC2

Paid Cloud Service – billed by the hour

- Start a resource only when you need it
- To explore, use a micro instance
 - You can keep one micro instance running 24x7
- Terminate all other resources as soon as you are done with them
- Students will be penalized for over usage
 - We have a fixed budget, do not abuse the resources!
 - Intentional or unintentional abuse

 grade penalties
 - Resources need to be tagged, otherwise
 penalties

This Week

• Become familiar with content on OLI

– Start reading Unit 1, Module 1

- Quiz 1: Unit 1, Module 1 &2, Friday, Jan 22nd, 2016
- Projects on TheProject.Zone
 - Primer and PO, due Sunday, Jan 17th, 2016
- Check that you were enrolled on Piazza
- Create an account on AWS and Azure (ASAP)
 - Submit your AWS account info using the link provided in the primers on TheProject.Zone

Questions?

