

Administrative Issues

● Make use of office hours
○ We will have to make sure that you have tried yourself before you ask

● Monitor AWS expenses regularly
● Always do the cost calculation before launching services
● Terminate your instances when not in use
● Stopping instances still has an EBS cost ($0.1/GB-Month)
● Make sure spot instances are tagged right after launch

Important Notice
● DON’T EVER EXPOSE YOUR AWS CREDENTIALS!

○ Github
○ Bitbucket
○ Anywhere public…

● DON’T EVER EXPOSE YOUR AWS CREDENTIALS!
● DON’T EVER EXPOSE YOUR Azure CREDENTIALS!

○ ApplicationId, ApplicationKey
○ StorageAccountKey, EndpointUrl

Reflection
● Last week’s reflection

○ Project 1.2, Quiz 2
● Theme - Big data analytics

○ P1.1: Sequential Analysis of 418MB wikipedia data
○ P1.2: Parallel Analysis of 64GB compressed (300 GBs uncompressed)

wikipedia data
● Power of parallel analysis

○ Amount of work done remains the same
○ Span is reduced significantly

Reflection
● You should have learned

– How to process big data sets with MapReduce
•How MapReduce works
•How to write a Mapper and a Reducer
•Performance/cost tradeoff
•How to debug MapReduce

How to save overall cost by testing using small data sets
● Don’t forget about MapReduce just yet!

– Will be relevant in 15619Project and Project 4

This Week

● Quiz 3 (OLI Modules 5 & 6)
○ Due on Friday, Feb 5th,

2016, 11:59PM ET

● Project 2.1
○ Due on Sunday, Feb 7th,

2016, 11:59PM ET

OLI Module 5 - Cloud Management
Cloud Software stack - enables provisioning, monitoring and metering of virtual
user “resources” on top of the Cloud Service Provider’s (CSP) infrastructure.

● Cloud middleware
● Provisioning
● Metering
● Orchestration and automation
● Case Study: Openstack - Open-source cloud stack implementation

OLI Module 6 - Cloud Software
Deployment Considerations
● Programming the cloud
● Deploying applications on the cloud
● Build fault-tolerant cloud services
● Load balancing
● Scaling resources
● Dealing with tail latency
● Economics for cloud applications

Project 2
Overview

● 2.1 Scale, Scale, Scale
- AWS and Azure APIs
- Horizontal scaling in/out, load balancing,

failure detection, and cost management

● 2.2 Explore load balancing
- Distribute load evenly among your

servers

● 2.3 Explore caching
strategies

- Speedup your server through different
cache strategies

MSB Interview

Project 2.1 Learning Objectives
● Use cloud APIs to programmatically control resources in response to demand.
● Be able to deploy web services that account for failure, cost and performance constraints.
● Compare and contrast the APIs used in AWS and Azure.
● Be able to identify and explain the need for handling resource failures.
● Be able to explain the need for distributing load evenly among all resources.
● Configure and deploy a Load Balancer along with an VM Scale Set on Azure.
● Configure and deploy an Elastic Load Balancer along with an Auto Scaling Group on AWS.
● Develop solutions that manage cloud resources with the ability to deal with resource failure.
● Account for cost as a constraint when provisioning cloud resources.
● Analyze the trade off between maximizing performance & reliability and the effect on cost.

Quality of Service (QoS)
Quantitatively Measure QoS

● Performance: Throughput, Latency
(Very helpful in Projects 2 & 15619Project)

● Availability: the probability that a system is operational at a given time
(Projects P2.1 and P2.2)

● Reliability: the probability that a system will produce a correct output up to a
given time (Project P2.1)

QoS Matters:

• Amazon found every 100ms of latency
cost them 1% in sales.

sapient.com
13

● Daily
● Weekly
● Monthly
● Yearly
● ...

Cloud Comes to the Rescue!
Scaling!

P0: Vertical Scaling

Load
Generator

DC

DC

DC

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

P0: Vertical Scaling Limitation

Load
Generator

DC

DC

DC

● However, one
instance will
always have
limited resources.

● Reboot/Downtime.

Horizontal Scaling

DC

DC

DC

Load
Generator

How do we distribute load?

CPU utilization, memory utilization…

Available capacity

Instance Failure?

CPU utilization, memory utilization…

Available capacity

What You Need
•
•
•

Managed group of servers

Load Balancer

Load balancer
● “Evenly” distribute the load
● Simplest distribution strategy

○ Round Robin
● Health Check

● What if the Load Balancer becomes the bottleneck?
○ Elastic Load Balancer

■ Could scale up based on load
○ Elastic, but it takes time

■ Through the warm-up process

Load Balancer

sapient.com
23

Scaling
Manual Scaling:
● Expensive on manpower
● Low utilization or over provisioning
● Manual control
● Lose customers

Autoscaling:
● Automatically adjust the size based on

demand
● Flexible capacity and scaling sets
● Save cost

AWS Autoscaling
Auto Scaling on AWS

Using the AWS APIs:

● CloudWatch
● ELB
● Auto Scaling Group
● Auto Scaling Policy
● EC2

You can build a load balanced
auto-scaled web service.

•

•

…

Project 2.1 Scaling on Azure and AWS
● Step 1

○ Azure Horizontal Scaling
● Step 2

○ Azure Auto Scaling
● Step 3

○ AWS Horizontal Scaling
● Step 4

○ AWS Auto Scaling

fig. horizontal scaling

Load
Generator

DC

DC

DC

LB

Project 2.1 Scaling on Azure and AWS
● Step 1 Azure Horizontal Scaling
● Implement Horizontal Scaling in Azure.
● Write a program that launches the data

center instances and ensures that the
target total RPS is reached.

● Your program should be fully
automated: launch LG->submit
password-> Launch DC-> start test->
check log -> add more DC...

fig. horizontal scaling

Load
Generator

DC

DC

DC

Project 2.1 Scaling on Azure and AWS
● Step 2

○ Azure Auto Scaling
● Deploy a VM Scale Set in Azure

using the Json configuration
files. You need to configure the
policies (condition, action).

● You can start your test manually.
● VM Scale Set should be able to

scale up when the load goes up.
fig. horizontal scaling

Load
Generator

DC

DC

DC

LB

Project 2.1 Scaling on Azure and AWS
● Step 3

○ AWS Horizontal Scaling
● Very similar to Horizontal

Scaling in Azure.
● Difference?

○ You need to use AWS API.

fig. horizontal scaling

Load
Generator

DC

DC

DC

Project 2.1 Scaling on Azure and AWS
● Step 4

○ AWS Auto Scaling

fig. horizontal scaling

Load
Generator

DC

DC

DC

LB

•

•

•
•

Hints for Project 2.1 AWS Autoscaling
Step 4 - AWS Auto Scaling

● Autoscaling Test could be very EXPENSIVE!
○ on-demand and charged by the hour

● Try your code on cheap instances (maybe t1.micro) first
● Creating and deleting security groups can be tricky
● CloudWatch and monitoring in ELB is helpful
● Explore ways to check if your instance is ready
● Understanding the API documents could take time
● Finish parts 1-3 first, the experience will help

Azure:

● Submit on Azure’s load generator (LG) VM
● The code for the horizontal scaling task

AWS:

● Submit on AWS’s load generator instance
● Include code for both, the horizontal scaling task and the autoscaling

task as a single zip file
● Add a readme file if necessary

Project 2.1 Code Submission

Penalties for 2.1
Violation Penalty of the project grade

Spending more than $20 for this project phase on AWS -10%

Spending more than $35 for this project phase on AWS -100%

Failing to tag all your resources in either parts (EC2 instances,
ELB, ASG) for this project (AWS only)

-10%

Submitting your AWS credentials in your code for grading -100%

Submitting the Azure part with AWS instances or the AWS part
with Azure VMs

-100%

Using instances other than m3.medium or m3.large for
Autoscaling on AWS

-100%

Using virtual machines other than Standard_A1(DC) and
Standard_D1(LG) in the Azure part

-100%

AWS APIs:
● Command Line Interface API

Tools (link)
● AWS SDK for Java (link)
● AWS SDK for Python (link)

Azure APIs:
● Command Line Interface API

Tools (link)
● Azure SDK for Java (link)
● Azure SDK for Python (link)

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
http://azure-sdk-for-python.readthedocs.org/en/latest/
http://azure.github.io/azure-sdk-for-java/

15619Project Team Up

15-619 Students:
● Start to form your teams

○ Choose carefully as you cannot change teams
○ Look for a mix of skills in the team

■ Front end
■ Back end
■ ETL

● Create an AWS account only for the team project
● Wait for our post on Piazza to submit your team information

This Week’s Deadlines

● Quiz 3 (OLI Modules 5 & 6)
○ Due on Friday, Feb 5th,

2016, 11:59PM ET

● Project 2.1
○ Due on Sunday, Feb 7th,

2016, 11:59PM ET

DEMO

1. Copy images to your storage account in Azure
2. Create VM using the Azure API
3. Deploy Azure Virtual Machine Scale Set using JSON

configuration files

Questions?

