15-319 / 15-619 Cloud Computing

Recitation 5 February 9th, 2016

Overview

- Administrative issues
 Office Hours, Piazza guidelines
- Last week's reflection
 Project 2.1, OLI Unit 2 module 5 and 6
- This week's schedule
 - Project 2.2 February 14, 2016
 - Quiz 4 February 12, 2016 (Modules 7, 8, 9)
 - Finalize 3 person teams for the 15619Project

Announcements /

- Monitor your expenses regularly
 - Check your bill frequently on TPZ
 - Check on AWS, use Cost Explorer filter by tags
 - Check on the Azure portal since only \$100/mo
- Terminate your resources when not in use
 - Stop still costs EBS money (\$0.1/GB/Month)
 - Amazon EC2 and Amazon Cloudwatch fees for monitoring, ELB
 - Autoscaling group no additional fees
- Use spot instances

Announcements 1

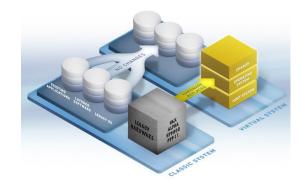
- Protect your credentials
 - A Student had his credentials stolen.
 - \$1.1K was spent in a few hours.
 - Crawlers are looking for AWS credentials on public repos!

Last Week's Reflection

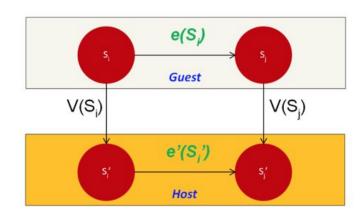
- Content
 - Unit 2 Modules 5 and 6:
 - Cloud Management & Software Deployment Considerations
 - Quiz 3 completed
- Azure and AWS EC2 APIs
 - CLI, Java, Python
- Load Balancing and AutoScaling
 - Experience horizontal scaling
 - Manage cloud resources and deal with failures using programs
 - Initial experience with load balancing

Project 2.1

- Manual grading of submitted code
 - 10% of the total Azure points
 - 20% of the total AWS points
 - Always make sure that your code is readable
 - Use the Google Code Style guidelines
 - Always add comments especially for complex parts


This Week: Content

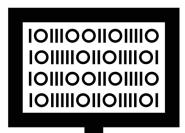
- UNIT 3: Virtualizing Resources for the Cloud
 - Module 7: Introduction and Motivation
 - Module 8: Virtualization
 - Module 9: Resource Virtualization CPU
 - Module 10: Resource Virtualization Memory
 - Module 11: Resource Virtualization I/O
 - Module 12: Case Study
 - Module 13: Network and Storage Virtualization


OLI Module 7 - Virtualization Introduction and Motivation

- Why Virtualization
 - Enabling the cloud computing system model
 - Elasticity
 - Resource sandboxing
 - Limitation of General-Purpose OS
 - Mixed OS environment
 - Resource Sharing
 - •Time
 - Space
 - Improved system utilization and reduce costs

OLI Module 8 - Virtualization

- What is Virtualization
 - Involves the construction of an isomorphism that maps a virtual guest system to a real (or physical) host system
 - Sequence of operations e modify guest state
 - Mapping function V(Si)
- Virtual Machine Types
 - Process Virtual Machines
 - System Virtual Machines



OLI Module 9 Resource Virtualization - CPU

- Steps of CPU Virtualization
 - Multiplexing a physical CPU among virtual CPUs
 - Virtualizing the ISA (Instruction Set Architecture) of a CPU

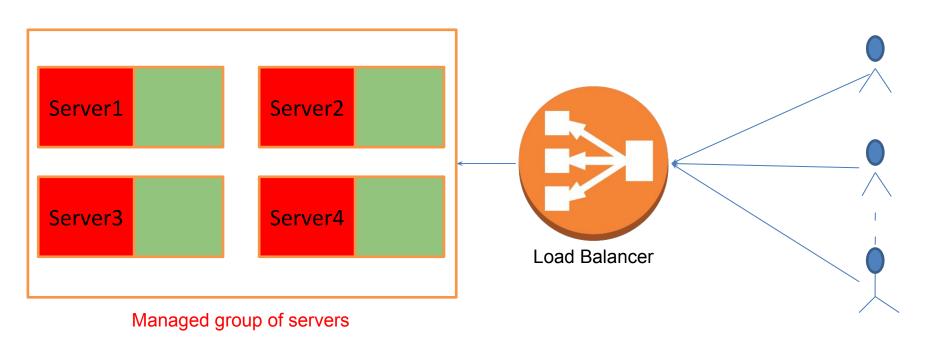
- Code Patch, Full Virtualization and Para virtualization
- Emulation (Interpretation & Binary Translation)
- Virtual CPU

This Week: Project

- P2.1: Horizontal Scaling and Autoscaling
 - MSB First Round Interview
- P2.2: Load Balancing Strategies
 - MSB Second Round Interview
- P2.3: Caching Strategies
 - MSB Final Round Interview

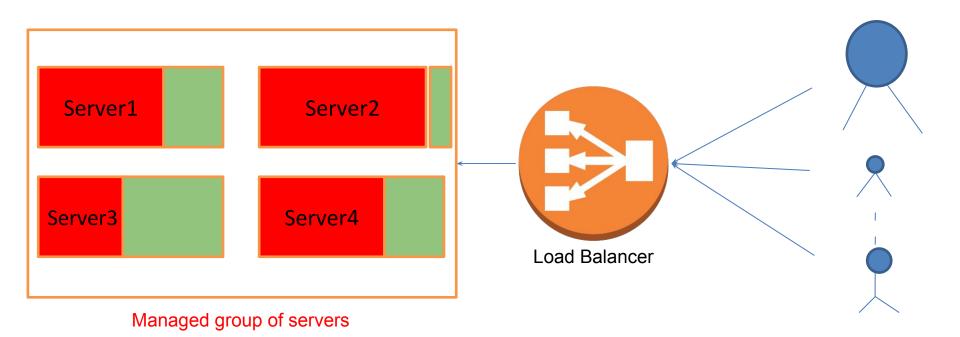
Load Balancing

- What is Load Balancing
 - Efficiently dividing incoming network traffic among a pool of back-end servers
- Motivations
 - Improved Quality of Service (QoS)
 - Increased throughput
 - Decreased latency
 - High Availability (HA)
 - Health check and fault tolerance


Load Balancer - Distribution Strategy

Simple load distribution strategy:

- Random scheduling
- Round Robin
 - Works well for a homogeneous load
 - Might not work so well for a heterogeneous load


Homogenous Load

- The requests issued in a homogenous workload put the same demands on the back-end resources.
- Simply distributing the requests to the available servers could lead to a balanced load.

Heterogenous Load

- Could lead to an uneven workload because the resource demands of heterogeneous requests might be different.
- One of the machines could receive several requests that overwhelm its resources compared to others.

Load Balancer - Evaluation

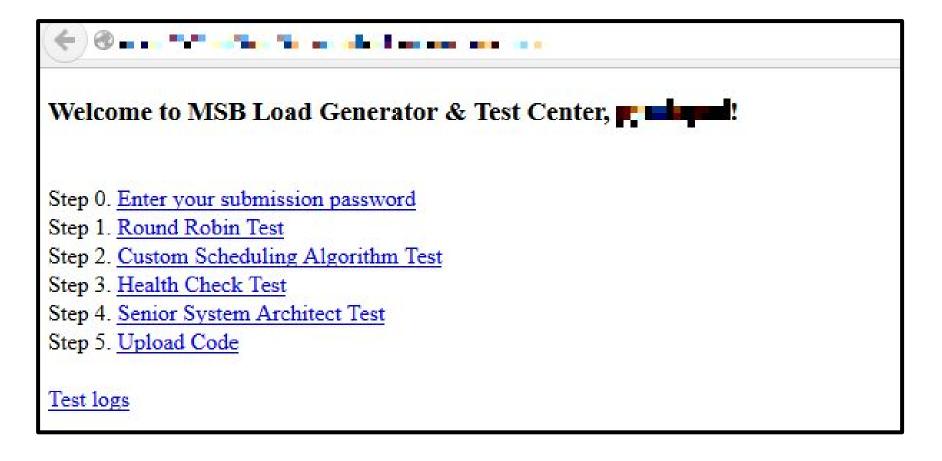
Load distribution strategies:

- How about something more intelligent?
 - Based on request execution time?
 - Based on resource utilization?

P2.2 - Tasks

- Load balancer
 - Write code for round-robin scheduling
 - Implement an effective load distribution strategy
 - Implement a health check
- All code to be written in the load balancer
- Skeleton code given
- We provide an API to retrieve a Data Center instance's CPU utilization

P2.2 Architecture



P2.2 - Load Balancer Functionality

- Distribute incoming requests evenly among the available data center instances
- Health check
 - Measure health of instances
 - Faulty instances will bring down performance
 - Handle the case of instance failure
 - Stop sending requests to failed instance
 - Launch a new instance and add to LB

Project 2.2: Load Generator UI

Project 2.2: Data Center UI

Skeleton Code Provided

Skeleton code in Java (loadbalancer)

- Implements "the plumbing" of a load balancer
 - Setting up of sockets to the client and server
 - API for forwarding requests and receiving responses

Pending tasks:

- Implement a simple round-robin request router
- Implement a health-check that detects and recovers from failure
- Understand the different types of requests and learn to monitor web servers in real-time
- Forward requests based on observed load on each web server [in start() method]

Project 2.2 Penalties

Project Grading Penalties

Besides the penalties mentioned in recitation and/or on Piazza, penalties accrue for the following:

Violation	Penalty of the project grade
Spending more than \$5 for this project phase on AWS	-10%
Spending more than \$10 for this project phase on AWS	-100%
Failing to tag all your AWS resources in either parts (EC2 instances, etc) for this project.	-10%
Submitting your AWS credentials in your code for grading	-100%
Submitting your Azure credentials in your code for grading	-100%
Submitting the Azure part with AWS instances or the AWS part with Azure VMs.	-100%
Attempting to hack/tamper the autograder in any way	-100%
Using virtual machines other than Standard_A1(DC) and Standard_D1(LG and LB) in the Azure part	-100%

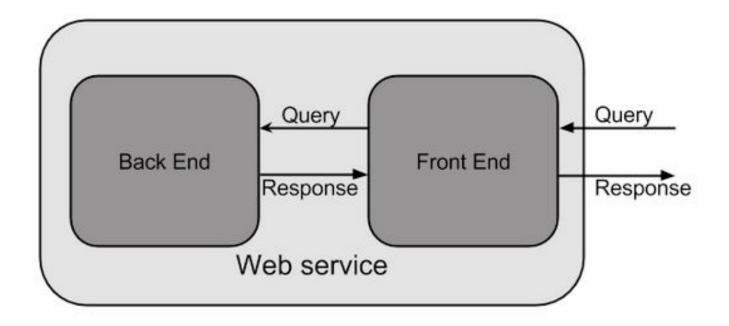
Upcoming Deadlines

Project 2.2: Load Balancer Internals

Due: Sunday 02/14/2016 11:59PM Pittsburgh

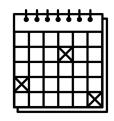
Quiz 4: Modules 7, 8 and 9:

Due: Friday 02/12/2016 11:59PM Pittsburgh



• 15619Project Team Formation (@1336)

Due: Monday 02/15/2016 11:59PM Pittsburgh



15619Project Architecture

- Writeup and Queries will be released on Thursday, February 25th, 2016
- We can have more discussions in subsequent recitations
- For now, ensure 3-person teams you decide have experience with web frameworks and database, storage principles and infra setup/hacking

15619 Project Time Table

Phase (and query due)	Start	Deadline	Code and Report Due
Phase 1 Part 1 • Q1, Q2	Thursday 02/25/2016	Wednesday 03/16/2016	Thursday 03/17/2016
	00:00:01 EST	23:59:59 E D T	23:59:59 E D T
Phase 2	Thursday 03/17/2016	Wednesday 03/30/2016	
● Q1, Q2, Q3	00:00:01 E D T	15:59:59 E D T	
Phase 2 Live Test ■ Q1, Q2, Q3	Wednesday 03/30/2016	Wednesday 03/30/2016	Thursday 03/31/2016
	18:00:01 E D T	23:59:59 E D T	23:59:59 E D T
Phase 3 • Q1, Q2, Q3, Q4	Thursday 03/31/2016 00:00:01 E D T	Wednesday 04/13/2016 15:59:59 E D T	
Phase 3 Live Test • Q1, Q2, Q3, Q4	Wednesday 04/13/2016	Wednesday 04/13/2016	Thursday 04/13/2016
	18:00:01 E D T	23:59:59 E D T	23:59:59 E D T

The End