15-319 / 15-619 Cloud Computing

Recitation 8 March 1st, 2016

1

Overview

- Administrative issues
 Office Hours, Piazza guidelines
- Last week's reflection Project 3.1, OLI Unit 3, Module 13, Quiz 6
- This week's schedule
 - 15619 Project Query 1 Bonus 3/2
 - Quiz 7 March 3rd (Unit 4, Module 14)
 - Project 3.2 March 6th

Last Week : A Reflection

- Content, Unit 3 Module 13:
 - Storage and Network Virtualization
 - Quiz 6 completed
- P3.1: You explored data storage solutions
 - Files
 - Databases (SQL & NoSQL)
 - MySQL
 - HBase
 - Benchmarked vertical scaling performance

This Week: Content

UNIT 4: Cloud Storage

- Module 14: Cloud Storage
 - Quiz 7 Introduction to Cloud Storage

• Thursday, March 3rd

- Module 15: Case Studies: Distributed File Systems
 Quiz 8: Distributed File Systems Checkpoint
- Module 16: Case Studies: NoSQL Databases
- Module 17: Case Studies: Cloud Object Storage
 Quiz 9: NoSQL and Object Stores

Project 3 Weekly Modules

• P3.1: Files, SQL and NoSQL

• P3.2: Sharding and Replication

- Sunday, March 6th
- P3.3: Consistency
- P3.4: Social network and heterogeneous back end storage
- P3.5: Data warehousing and OLAP

P3.2: Motivation - Scale

P3.2: Motivation - Global Users

- Speed of Light ($\approx 3.00 \times 10^8$ m/s)
- Inherent latencies

P3.2: Motivation - Requirements

- Typical end-to-end latency
 - Client request
 - Network latency (to backend)
 - Server response
 - Includes fetching and processing data from backend
 - Network latency (from backend)
 - Client response

P3.2: Motivation - Latency

P3.2: Motivation - Replicas

P3.2: Motivation - Replicas cont

P3.2: Motivation - Replicas

- As you can see, by adding replicas to strategic locations in the world, we can greatly reduce the latency seen by outlying clients
- Each added datacenter decreases the average latency seen by all clients
- But at what cost?

P3.2: Motivation - Replicas?

Client Statistics: Min Latency: ?? Max Latency: ?? Average Latency: ??

13

Cost: ?????

P3.2: Motivation - Replicas

- There are downsides to adding additional replicas
 - Cost for new data center to host the replica
 - May increase latency for write requests during replication, because we need to update every single replica
- As you add more replicas throughout the world, the benefit per replica tapers off

P3.2: Motivation - Requirements

- Inherent dynamicity of data
- Large scale data intensive systems
 - Many reads/ writes impact throughput performance
 - Hot records
 - Global reach creates latency issues
 - Expectation to be 100% available
- Possible Solutions
 - Vertically scale storage backend
 - Replication
 - Sharding

P3.2: Replication (1)

 Duplicate the data across multiple instances and/or locations

Non-Distributed Key-Value store

Key		Value
	1	А
	2	В
	3	С
	4	D
	5	Е
	6	F

Distributed Key-Value Store with Replication

DB Node 1			DB Node 2			DB Node 3				
	Key	Value			Key	Value			Key	Value
	1	А			1	Α			1	Α
	2	В			2	В			2	В
	3	С			3	С			3	С
	4	D			4	D			4	D
	5	Е			5	Е			5	Е
	6	F			6	F			6	F

P3.2: Replication (2)

- Duplicate the data across multiple instances
- Advantages
 - Fetching data can be faster
 - Data can be retrieved from any datastore
 - System can handle failures of nodes
- Disadvantages
 - Requires more storage capacity
 - Updates are slower
 - Changes must reflect on all datastores

P3.2: Consistency

- Data consistency across replicas is important (More on consistency models in P3.3 next week)
 - Strict, Strong (Linearizability), Sequential, Causal and Eventual Consistency
- This Week Strong Consistency
 - All datastores must return the same value for a key
 - The order in which the values are updated must be preserved

P3.2: Strong Consistency

Single PUT request for key 'X'

- Block all GET for key 'X' until all datastores are updated
- GET requests for a different key 'Y' must be allowed

Multiple PUT requests for 'X'

- Resolved in order of their arrival
- Any GET request in between 2 PUTs must return the last PUT value

P3.2: Motivation - Replication READ

P3.2: Motivation - Replication WRITE

P3.2: Motivation - Replication

- Read requests are very fast!
 - All clients have a replica close to them to access
- Write requests are quite slow
 - Instead of updating a single data center, all write requests must now update all 3 replicas
 - If write requests for a certain key is created, then they all have to wait for each other to finish

P3.2: Sharding (1)

• Partition data across multiple instances

P3.2: Sharding (2)

- Partition data across multiple instances
 Needs a mechanism to partition the data
- Advantages
 - Updates are faster
- Only need to update one datastore
- Disadvantages
 - Fetching data is slower
- Overhead in identifying the location of data
 - Requires more storage capacity
 - More susceptible to failure

P3.2: Hashing

Hashing

 Map data (key) of variable length to a value of fixed length.

Consistent Hashing

- The hashing algorithm must return the same value for the same key at all times.
- Used to "remember" in which datastore a particular key is stored.

P3.2: Motivation - Sharding READ

P3.2: Motivation - Sharding WRITE

P3.2: Motivation - Sharding

- Read requests are rather slow
 - Once again, some clients may have high latencies due to being geographically further away from the appropriate data center
- Write requests are fast*
 - Even though there are 3 shards, only one ever needs to be updated!
 - Fast* performance derives from the ability to strategically distribute "hot" records to appropriate shards

P3.2: Your Task

- You are provided with 3 Key-Value datastore instances that support:
 - PUT & GET
- Implement a coordinator that supports:
 - Replication for PUT & GET
 - Strong consistency
 - Sharding for PUT & GET
 - Uses a consistent hashing algorithm
 - Bonus: even distribution

P3.2 Architecture

Coordinator receives PUT / GET requests from Client

Replication:

- PUT All datastore must update
- GET Retrieve from the datastore specified
- Strong Consistency

Sharding:

- PUT Update a single datastore based on hash
- GET Retrieve from the same datastore as PUT
- Bonus Even distribution of data on all nodes

15619Project

TWITTER DATA ANALYTICS: 15619 PROJECT

15619 Project Phase 1 Deadlines

15619 Project System Architecture

Q1 : Heartbeat and Authentication

- Task
 - Greatest Common Divisor (GCD) for big integers
 - Decryption
 - Compare at least two frameworks (+ report)
- Tips
 - Understand how the frameworks work
 - Use multiple front-end instances

Current Submission Status

Rank 🕼	Nickname 11	Time ↓1	Total 🕼	Effective Throughput $\downarrow_{\mathbb{F}}^{\overline{p}}$	Q1 Score	Q1 Effective Throughput $\downarrow\uparrow$
1	MyLittlePony	02/29/2016 00:43 -0500	100	33405.3	100	33405.3
2	QuackingDoge	02/28/2016 08:35 -0500	100	31556.3	100	31556.3
3	silverlining1	02/29/2016 13:45 -0500	100	31471.7	100	31471.7
4	ccsome	02/26/2016 19:17 -0500	100	30833.5	100	30833.5
5	ccfighter	02/28/2016 18:55 -0500	100	30775.2	100	30775.2
6	Steins;Gate	02/29/2016 02:32 -0500	100	30342	100	30342
7	YouKnowNothingJonSnow	02/28/2016 15:07 -0500	100	29344.4	100	29344.4
8	ThreeKings	02/29/2016 00:27 -0500	100	28998.1	100	28998.1
9	0X3D03	03/01/2016 02:38 -0500	100	27192.8	100	27192.8
10	AXIS	03/01/2016 04:17 -0500	100	25404.6	100	25404.6
11	Aplus	02/29/2016 13:30 -0500	100	25113.79	100	25113.79
12	Dimly Impugn	02/28/2016 17:19 -0500	88.99	22246.7	88.99	22246.7
13	Awesomething	03/01/2016 07:07 -0500	77.8	19449.8	77.8	19449.8
14	cc15619_fall16	03/01/2016 04:37 -0500	68.32	17079.1	68.32	17079.1
15	Shaw Eleven Lang	02/29/2016 23:50 -0500	62.9	15724.2	62.9	15724.2

Q2 : Text Cleaning And Analysis

- ETL Task
 - Sentiment Density Calculation
 - Text Censoring
 - Reference Data Set
- Request
 - Userid
 - Hashtag
- Return

• Tweet ID, Tweet Time, Sentiment Density, Censored text

Q2: Sentiment Density

Amazingly, despite the nice cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper interesting.

Sentiment Density: ??

Word	Score	Word	Score	
amazing	4	interesting	3	
best	3	enjoy	1	
nice	2	super	7	
hope	2	study	-100	

Q2: Sentiment Density

Amazingly, despite the nice cloudy weather, the **BEST** Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper interesting.

Effective Word: 15

Sentiment score: -89

3069/12 = -2.922 (rounding)							
Word	Score		Word	Score			
amazing	4		interesting	3			
best	3		enjoy	1			
nice	2		super	7			
hope	2		study	-100			

 $CD_{1} = 0.0/15$ $(n_{1}, n_{2}, n_{3}, n_$

Q2: Text Censorship

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study CLOUD COMPUTING. Cloud is supper-interesting.

Amazingly, despite the nice, cloudy weather, the BEST Hope for us to enjoy is to study C***D COMPUTING. Cloud is supper-i******g.

Q2: Other issues

• Unicode

- الحوسبة السحابية बादल कंप्यूटिंग 云计算 クラウドコ ンピューティング ಕೌಲ್ಡ್ ಕಂಪೂಯ್ಟಿಂ ಗ್ರಾಲ್ಡ್ தಂಪೂಯ್ಟಿಂ пустаныхвычислений
- Multiple tweets at the same time for a single user

On Piazza

- Scoreboard Issues and Bonus
 - bonus top 3 by effective throughput of Q1 and Q2
 - score by effective throughput of Q1 and Q2
- Cost
 - EC2, EBS, ELB, EMR
- Spot instance limit / Accounts not verified
 - issue AWS support ticket / call

Upcoming Deadlines

- Quiz 7: Unit 4 Module 14 Cloud Storage
 Due: <u>Thursday</u>, 3/3/2016 11:59PM Pittsburgh
- Project 3.2: Partitioning (Sharding) and Replication
 Due: 3/6/2016 11:59PM Pittsburgh
- 15619Project: Phase 1, Bonus (This week!)
 Due: 3/2/2016 11:59PM Pittsburgh
- 15619Project: Phase 1

Due: 3/16/2016 11:59PM Pittsburgh