
15-319 / 15-619
Cloud Computing

Recitation 9

March 15th, 2016

Overview

• Administrative issues
Office Hours, Piazza guidelines

• Last week’s reflection
Project 3.2, OLI Unit 4, Module 14, Quiz 7

• This week’s schedule
- 15619 Project - Query 1 & 2 - March 16th

- Quiz 8 - March 18th (Unit 4, Module 15)
- Project 3.3 - March 20th

2

Last Week : A Reflection
• Content, Unit 4 - Module 14:

– Cloud Storage - Big picture

– Quiz 7 completed

• P3.2: You began exploring distributed storage systems

– Handled requests from a single front end

coordinator and 3 backend datastores

– Basics of concurrency

– Learned about Sharding and Replication

3

This Week: Content

UNIT 4: Cloud Storage
● Module 14: Cloud Storage

○ Quiz 7 - Introduction to Cloud Storage
● Module 15: Case Studies: Distributed File

Systems
○ Quiz 8: Distributed File Systems

● Friday, March 18th
● Module 16: Case Studies: NoSQL Databases
● Module 17: Case Studies: Cloud Object Storage

○ Quiz 9: NoSQL and Object Stores

Project 3 Weekly Modules

• P3.1: Files, SQL and NoSQL
• P3.2: Sharding and Replication
• P3.3: Consistency

• Due Sunday, March 20th
• P3.4: Social network and heterogeneous back

end storage
• P3.5: Data warehousing and OLAP

P3.3: Motivation - Consistency

6

Account Balance

xxxxx-4437 $100

Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

P3.3: Motivation - Consistency

7

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100
Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

P3.3: Motivation - Consistency

8

Account Balance

xxxxx-4437 $0

$100

$100
Withdrawal Routine

if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0

Bank lost $100

P3.3: Motivation - Consistency

9

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Motivation - Consistency

10

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw 100
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Motivation - Consistency

11

Account Balance

xxxxx-4437 $0

$100

$0
Withdrawal Routine

lock(balance)
if(amt< balance):
 bal = bal - amt
 return amt
else:
 return 0
unlock(balance)

P3.3: Consistency Models

12

Tradeoff:
• Strict
• Strong
• Sequential
• Causal
• Eventual

vs.

P3.3: Strong Consistency

13

• Every operation receives a global timestamp
order.
– Typically the order in which they arrive at the coordinator

• Operations must be ordered according to
timestamps.

• At any given point of time, all clients should
read the same data from any datacenter
replica.

P3.3: Eventual Consistency

14

• Writes are performed in the order they are
received at each replica
• Operations may not be blocked for replica

consensus
• Clients that request data may receive multiple

versions of the data, or stale data
• Left to the application to resolve

P3.3: Architecture

15

us-west
us-east

Singapore

DCI

coordinator datacenter

P3.3: Your Task

16

• Launch Coordinators and DCIs
• All in us-east, we simulate global latencies

• Implement the Coordinators
• Strong Consistency
• Eventual Consistency

P3.3: Hints

17

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

• Launch a total of 7 machines (3 data centers, 3 coordinators and 1 client)

• All machines should be launched in US East region.

 The “US East” here has nothing to do with the simulated location
 of datacenters and coordinators in the project.

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR
(Coordinator.java)

SINGAPORE
COORDINATOR
(Coordinator.java)

Client

P3.3 TODO:

• Complete the KeyValueStore.java (on the datacenter instance) and Coordinator.java (on the coordinator instance).

• Support 2 consistencies for PUT/GET request: Strong and Eventual.

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for PUT request in strong consistency

US-EAST-DNS:8080/put?key=X&value=1×tamp=1

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for PUT request in strong consistency

hash(“X”) to determine if this coordinator is
responsible for “X”. (you can use the
hashing algorithm from P3.2)

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Example workflow for a PUT request in strong consistency

• If US-EAST is responsible for key “X”

You should call KeyValueLib.AHEAD(“X”,1) to
notify all 3 datacenters of this PUT request.
Resulting behavior may include:
• Locking subsequent requests for key “X” until

current request is complete
• May be done on datacenter, coordinator, or a

combination of both. Up to design

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

ahead?key=X×tamp=1

ahead?key=X×tamp=1ahead?key=X×tamp=1

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

KeyValueLib.PUT(US-EAST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(US-WEST-DNS, "X", "1", 1, "strong")

KeyValueLib.PUT(SINGAPORE-DNS, "X", "1", 1, "strong")

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

Upon receiving the actual request, it will be up
to you to decide how and when to update the
value
Timestamps are extremely important to this
project, so you may choose to store more than
just the value associated with each key only for
backend purposes

US-EAST
DATACENTER

(KeyValueStore.java)

US-WEST
DATACENTER

(KeyValueStore.java)

SINGAPORE
DATACENTER

(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Response back (could be empty)

Finally, you should call KeyValueLib.COMPLETE(“X”,
1) to notify all 3 datacenters of this request’s
completion.
Resulting behavior may include:
• Allowing subsequent requests to proceed
• Allow pending requests to be completed (beware the

timestamp ordering!)

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR

(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

Response back
(could be empty)

Example workflow for PUT request in strong consistency

• If US-EAST is responsible for key “X”

US-EAST
DATACENTER
(KeyValueStore.java)

US-WEST
DATACENTER
(KeyValueStore.java)

SINGAPORE
DATACENTER
(KeyValueStore.java)

US-EAST
COORDINATOR
(Coordinator.java)

US-WEST
COORDINATOR

(Coordinator.java)

SINGAPORE
COORDINATOR

(Coordinator.java)

Client

KeyValueLib.FORWARD(US-WEST-DNS, "X", "1", 1)

Example workflow for PUT request in strong consistency

• If US-WEST is responsible for key “X”

More Hints:
● In strong consistency, “AHEAD” and “COMPLETE” should be useful in helping

you lock requests because they are able to communicate with datastores with
negligible delay, regardless of region. You should think carefully of how and
where they should be used

● Lock all datacenters in strong consistency.
● Eventual consistency is significantly easier to implement

Suggestions:
● You should first know the difference between the 2 policies before writing your

code.
● Think about possible race conditions.
● Read the hints on the TPZ handout carefully.
● Don’t modify any class except Coordinator.java and KeyValueStore.java.
● There are a number of various performance enhancements and optimizations

you can do if you want to go for the bonus task. Try applying the different
techniques you’ve learned

How To Test:
● Run “./vertx run Coordinator.java” and “./vertx run KeyValueStore.java” to start the

vertx server on each of the data centers and coordinators. (You could use nohup
to run it in background)

● Use “./consistency_checker strong”, or “./consistency_checker eventual” to test
your implementation of each consistency. (Our grader uses the same checker)

● If you want to test one simple PUT/GET request, you could directly enter the
request in your browser.

tWITTER DATA ANALYTICS:
15619 PROJECT

Phase (and query
due)

Start Deadline Code and Report Due

Phase 1 Part 1
● Q1, Q2

Thursday 02/25/2016
00:00:01 EST

Wednesday 03/16/2016
23:59:59 EDT

Thursday 03/17/2016
23:59:59 EDT

Phase 2
● Q1, Q2, Q3

Thursday 03/17/2016
00:00:01 EDT

Wednesday 03/30/2016
15:59:59 EDT

Phase 2 Live Test
(Hbase/MySQL)

● Q1, Q2, Q3

Wednesday 03/30/2016
18:00:01 EDT

Wednesday 03/30/2016
23:59:59 EDT

Thursday 03/31/2016
23:59:59 EDT

Phase 3
● Q1, Q2, Q3, Q4

Thursday 03/31/2016
00:00:01 EDT

Wednesday 04/13/2016
15:59:59 EDT

Phase 3 Live Test
● Q1, Q2, Q3, Q4

Wednesday 04/13/2016
18:00:01 EDT

Wednesday 04/13/2016
23:59:59 EDT

Thursday 04/13/2016
23:59:59 EDT

15619 Project Time Table

Note:
● There will be a report due at the end of each phase, where you are expected to discuss design,

exploration and optimizations.

Phase 2 Report Due

Phase 3 Start

03/31/2015

23:59:59 EDT

15619 Project
Phase 2

Code & Report
are Due

● 3 weeks for Phase 1
(Q1,Q2)

● 2 weeks for Phase 2
(Q1, Q2, & Q3)

15619 Project TimeLine

Phase 1 Due

03/16/2016

23:59:59 EDT

Phase 1 Report Due

Phase 2 Start

03/17/2016

23:59:59 EDT

15619 Project

Phase 1

Code & Report

are Due

Phase 2 Due

03/30/2016

15:59:59 EDT

Live Test starts

at 18:00:00 EDT

15619 Project System Architecture

Phase 1 Submission Status

Q1: Up to 06:00 am, EDT 03/15/2016
75 teams get score: 100

 5 teams < 90
 Highest RPS: 33405 rps -- MyLittlePony

Q2: Up to 06:00 am, EDT 03/15/2016
 Highest RPS: 22503.4 -- Sugoyi

 28 Teams reach target RPS
 51 Teams have >0 RPS

Phase 1 Common Issues

1. Same machine, same query, multiple runs, but different
RPS.
○ Some web frameworks have their built-in buffer, multiple runs of

same test set will generate higher and higher rps.

2. Very fast when using browser to test single requests, but
it turns out to be very slow when using TPZ generated
load.
○ Is your web frontend blocked? DB connection & query operations

in block mode?
○ Exception captured? Make sure all requests have a response.
○ “connection: close”

3. Speed through Load Balancer very slow
○ It takes a long time to warm up the ELB. It would be very helpful if

you try to build your own warm-up script.

● System Environment
○ Storage Medium
○ Storage Engine
○ Character set
○ Import data (SHOW WARNINGS)
○ Indexing

● Profiling/Optimization
○ EXPLAIN
○ SET PROFILING=1
○ htop, iotop

Q2 Hints - MySQL

Q2 Hints - HBase
● Loading data:

○ Pig, thrift

● HBase schema:
○ GET is much faster than SCAN
○ How to design rowkey?

● HBase cluster:
○ Cloudera Manager - easy deployment and management of cluster
○ Deploy your own HBase cluster and automate it
○ Using EMR will lead to higher cost ⇒ must use less instances <$.85

● HBase configuration tuning:
○ Region size／number http://archive.cloudera.com/cdh5/cdh/5/hbase-0.98.1-cdh5.1.5

/book/ops.capacity.html

Q3 : Handling Complex Read Queries

● Calculate word occurrences in tweet text within a certain user id

range and a data range. (Two-range query)

● Request Format

GET/q3?start_date=yyyy-mm-dd&end_date=yyyy-mm-

dd&start_userid=uid&end_userid=uid&words=w1,w2,w3

● Response Format
TEAMID,TEAM_AWS_ACCOUNT_ID\n

w1:count1\n

w2:count2\n

W3:count3\n

● Target RPS 6000

Q3 : Handling Complex Read Queries

● Request Example (Double Range Query)

GET/q3?start_date=2014-04-01&end_date=2014-05-

28&start_userid=51538630&end_userid=51539182&words=u,petition,loving

● Response Format

Team,1234-5678-1234

u:7\n

petition:2\n

loving:5\n

Q3: ETL

1. Split words when a non-alphanumeric character
([^a-zA-Z0-9]) is encountered.

2. Words are case INSENSITIVE in word count.

3. Banned words in Q2 will not appear in Q3 requests.

4. Ignore words from stop words list.

We will give reference file and reference server just as Q2.

Q3 Hints

● ETL:
○ Simpler than Q2, only using English tweets
○ Make sure to remove duplicate tweets

● Try to design a good schema, especially for HBase

● HBase:
○ Get is faster than Scan
○ If using Scan, do not scan the whole table

● Try Cloudera or deploy your own HBase cluster

● Is the load balanced in your cluster? Any hot nodes?

Phase 2 Live Test

Time Value Target Weight
6:00 pm - 6:30 pm Warm-up (Q1 only) - 0%

6:30 pm - 7:00 pm Q1 27000 5%

7:00 pm - 7:30 pm Q2 10000 10%

7:30 pm - 8:00 pm Q3 6000 10%

8:00 pm - 8:30 pm Mixed Reads(Q1,Q2,Q3) TBD 5+5+5 = 15%

HBase LiveTest

Time Value Target Weight
9:00 pm : 9:30 pm Warm-up - 0%

9:30 pm - 10:00 pm Q1 27000 5%

10:00 pm - 10:30 pm Q2 10000 10%

10:30 pm - 11:00 pm Q3 6000 10%

11:00 pm - 11:30 pm Mixed Reads (Q1,Q2,Q3) TBD/TBD/TBD 5+5+5 = 15%

MySQL LiveTest
Half Hour Break

Important Phase 1 Reminders

Phase 1 Report due soon
● Phase 1 Report & Code Deadline

○ [11.59 PM EDT 03/17/2016]

○ Upload to TheProject.Zone

○ No code ⇒ ZERO POINTS FOR ENTIRE PHASE 1

○ Missing files ⇒ ZERO POINTS FOR ENTIRE PHASE 1

● Very High Standard Expected in Report (25%)
○ Make sure you highlight failures and learning

○ If you didn’t do well, explain why

○ If you did, explain how

○ Compare at least two web frameworks

• Quiz 8: Unit 4 - Module 15 - Case Studies: DFSs

Due: 3/18/2016 11:59PM Pittsburgh

• Project 3.3: Consistency in Distributed K-V Stores

Due: 3/20/2016 11:59PM Pittsburgh

• 15619Project: Phase 1

Due: 03/16/2016 11:59PM Pittsburgh

• 15619Project: Phase 1, Report

Due: 03/17/2016 11:59PM Pittsburgh

Upcoming Deadlines

