
15-319 / 15-619
Cloud Computing

Recitation 11

March 29th, 2016

Overview
● Administrative issues

– Tagging, 15619Project, project code
● Last week’s reflection

– Project 3.4
– Quiz 9

● This week’s schedule
– Project 3.5
– Unit 5 - Module 18
– 15619Project Phase 2
– Quiz 10

● Twitter Analytics: The 15619Project

Reminders

● Monitor AWS expenses regularly and tag all resources
○ Check your bill (Cost Explorer > filter by tags).

● Piazza Guidelines
○ Please tag your questions appropriately
○ Search for an existing answer first

● Provide clean, modular and well documented code
○ Large penalties for not doing so.

○ Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

● Utilize Office Hours
○ We are here to help (but not to give solutions)

● Use the team AWS account and tag the 15619Project

resources carefully

Project 3.4 FAQs

Problem 1: Database connection issues

● Network issues / Security groups/ version consistent/typo
● For HBase:@2294

Problem 2: Loading, sorting and processing the data correctly.

● MySQL “order by” is case-insensitive
● Java String sorting is case-sensitive
● Or use utf8mb4_bin collation for MySQL, which is case-

sensitive

This week: Project 3.5
● P3.1: Files, SQL and NoSQL
● P3.2: Partitioning (Sharding) and Replication
● P3.3: Consistency in Distributed Key-Value Stores
● P3.4: Social network with Heterogeneous Backends
● P3.5: OLAP with Cloud Data Warehousing

● Carnegie Eagle(CE), a supermarket chain wishes to expand
their business further into other markets and wants a
decision support system

● The CTO of CE wants you to analyze various data warehouses
and pick the best one for the job

● The CTO subscribes to the “Hottest Data Warehouses”
weekly and decides she wants you to analyze the following:
○ Hive
○ Impala
○ Redshift

P3.5: Background

OLTP vs OLAP

Data warehousing and OLAP

● OLAP (Online Analytical Processing) queries deals with
historical/archived data

● OLAP warehouses optimized for reads and aggregations
● Rarely perform updates
● Tables in OLAP are denormalized as compared to normalized

tables in OLTP (Online Transaction Processing)
● Data warehouses tuned for high throughput since they process

large amounts of data
● OLTP databases are more tuned for smaller updates and lower

latency

OLAP data warehouses

● Hive
○ Built on Hadoop and provides a SQL-like interface to

query the data
○ Translates user SQL query to MapReduce jobs

● Impala
○ Based on Hadoop as well and provides a SQL-like

interface similar to Hive

○ Uses its own engine to translate user queries and directly
access data on the cluster (hence lower latency)

● Redshift
○ Data-warehouse-as-a-Service provided by Amazon Web

Services
○ Used for real time analytics

Data Warehousing Benchmark

OLAP Star Schema

• Hive
– No optimization required
– Follow the instructions and you are done

• Impala and Redshift
– Load data, execute unoptimized queries
– Optimize table schemas and/or queries
– The evaluation will be on both correctness

and response time

Data Warehousing Benchmark

• Hive
– May take an hour to run, be patient.

• Impala
– Some unoptimized queries may throw exceptions.

• Redshift
– Be aware of the high expenditure! Think before you start.

Notes

Module to Read

• UNIT 5: Distributed Programming and Analytics Engines for
the Cloud

– Module 18: Intro to distributed programming for the Cloud

– Module 19: Distributed analytics engines: MapReduce

– Module 20: Distributed analytics engines: Spark

– Module 21: Distributed analytics engines: GraphLab

– Module 22: Message Queues and Stream Processing

Distributed Programming

• Taxonomy of Programs:
• Sequential
• Concurrent
• Parallel

• Challenges in programming the cloud:
• Scalability
• Communication overhead
• Heterogeneity
• Synchronization
• Fault Tolerance
• Scheduling

Upcoming Deadlines

● Quiz 10 : Unit 5 - Module 18

○ Due: 04/01/2016 11:59 PM Pittsburgh

● Project 3.5 : Data warehousing and OLAP

○ Due: 04/03/2016 11:59 PM Pittsburgh

● 15619Project : Phase 2

○ Live-test DNS due: 03/30/2016 3:59 PM Pittsburgh

○ Code and report due: 03/31/2016 11:59 PM Pittsburgh

Busy Weeks Coming Up!

Wednesday Thursday Friday Sunday

Wednesday 03/30/2016
18:00:01 EDT

● Phase 2 Live Test
● Submit DNS by 15:

59 pm EDT

Thursday 03/31/2016
23:59:59 EDT

● Phase 2
Code & Report Due

Friday 04/01/2016
23:59:59 EDT

● Quiz 10

Sunday 04/03/2016
23:59:59 EDT

● P3.5 Due

Wednesday 04/13/2016
20:00:01 EDT

● Phase 3 Live Test

Thursday 04/14/2016
23:59:59 EDT

● Phase 3
Code & Report Due

Sunday 04/17/2016
23:59:59 EDT

● P4.2 Due

tWITTER DATA ANALYTICS:
15619 PROJECT

15619 Project Phase 2 Deadlines

Wed

03/16/2016

23:59:59 EDT

Thu

03/17/2016

23:59:59 EDT

15619 Project
Phase1

15619 Project
Phase 2

Q1, Q2, Q3
Development

15619 Project
Phase 2

Code & Report
Due

15619 Project
Phase 2
Live Test

15619 Project
Phase 3

Q1, Q2, Q3, Q4
Development

Wed

03/30/2016

18:00:00 EDT

Thu

03/31/2016

23:59:59 EDT

Wed

03/30/2016

15:59:59 EDT

Thu

03/31/2016

23:59:59 EDT

Wed

04/14/2016

23:59:59 EDT

Wed

04/13/2016

18:00:00 EDT

15619 Project
Phase 3
Live Test

15619 Project
Phase 3

Code & Report
Due

15619 Project Time Table

20

Phase (and query
due)

Start Deadline Code and Report Due

Phase 1 Part 1
● Q1, Q2

Thursday 02/25/2016
00:00:01 EST

Wednesday 03/16/2016
23:59:59 EDT

Thursday 03/17/2016
23:59:59 EDT

Phase 2
● Q1, Q2, Q3

Thursday 03/17/2016
00:00:01 EDT

Wednesday 03/30/2016

15:59:59 EDT

Phase 2 Live Test
(Hbase/MySQL)

● Q1, Q2, Q3

Wednesday 03/30/2016

18:00:01 EDT

Wednesday 03/30/2016
23:59:59 EDT

Thursday 03/31/2016
23:59:59 EDT

Phase 3
● Q1, Q2, Q3, Q4

Thursday 03/31/2016
00:00:01 EDT

Wednesday 04/13/2016
15:59:59 EDT

Phase 3 Live Test
● Q1, Q2, Q3, Q4

Wednesday 04/13/2016
18:00:01 EDT

Wednesday 04/13/2016
23:59:59 EDT

Thursday 04/13/2016
23:59:59 EDT

● Look at the feedback of your Phase 1 report!
○ Feedback and suggestions are provided

● Learn to document your system design and correctly reason about it
○ This will help you improve your system

● Use tools to gather evidence to identify issues in your system’s
performance
○ Check previous recitations for hints

● General Tips
○ Create an AMI to automate your processes
○ Evaluate which HBase distribution to use and which parameters

to configure

15619Project Report Tips

● Live Test!
■ Warmup, Q1, Q2, Q3, Mixed Q1-Q3

● Each for 30 min

■ Submit your team’s web service DNS
● Both HBase and MySQL

● Two DNS before 4:00 PM

Live Test!

Phase 2 Live Test

Time Value Target Weight

6:00 pm - 6:30 pm Warm-up (Q1 only) - 0%

6:30 pm - 7:00 pm Q1 27000 5%

7:00 pm - 7:30 pm Q2 10000 5%

7:30 pm - 8:00 pm Q3 6000 10%

8:00 pm - 8:30 pm Mixed Reads(Q1,Q2,Q3) 6000/3000/2000 5+5+5 = 15%

HBase Live Test

Time Value Target Weight

9:00 pm : 9:30 pm Warm-up - 0%

9:30 pm - 10:00 pm Q1 27000 5%

10:00 pm - 10:30 pm Q2 10000 10%

10:30 pm - 11:00 pm Q3 6000 10%

11:00 pm - 11:30 pm Mixed Reads (Q1,Q2,Q3) 6000/3000/2000 5+5+5 = 15%

MySQL Live Test Half Hour Break

● Watch your budget: $60 = Phase 2 + Live Test
● Preparing for the live test

○ Submit two URLs, MySQL & HBase.
○ Budget limited to $.85/hr for MySQL and HBase web

service separately.
■ No extra machines during live test except the

cluster (FE, DB). Tag all your instances!
○ Need to have all Q1-Q3 running at the same time.
○ Queries will be mixed.
○ Do not use spot instances.
○ Teams need to monitor the whole live test.
○ FULLY warm up ELB and EBS.
○ You can terminate HBase machines immediately after

the HBase live test.

Tips for Live Test

● One last query (Q4)
○ No ETL!

○ Serving write requests

○ Front end caching will not work during the live test

● Live Test!
■ Warmup, Q1, Q2, Q3, Q4, Mixed Q1-Q4

● Each for 30 min

■ Choose HBase or MySQL
● Submit One DNS

Phase 3

Query 4: Tweet Server

There are five different parameters in the request URL for a

request to /q4.

● tweetid (tweet ID)

● op (operation type)

● seq (sequence number)

● fields (comma separated fields involved in the request)

● payload (comma separated payload in Base64)

Execute the requests of a tweetid by the seq#

| field | type | example |

|-----------------|------------------------|---|

| tweetid | long int | 15213 |

| userid | long int | 156190000001 |

| username | string | CloudComputing |

| timestamp | string | Mon Feb 15 19:19:57 2016 |

| text | string | Welcome to P4!#CC15619#P3 |

| hashtag | comma separated string | CC15619,P3 |

| ip | string | 128.2.217.13 |

| coordinates | string | -75.14310264,40.05701649 |

| repliedby | comma separated userid | 156190000001,156190000002,156190000003 |

| reply_count | long int | 3 |

| mentioned | comma separated userid | 156190000004,156190000005,156190000006 |

| mentioned_count | long int | 3 |

| favoritedby | comma separated userid | 156190000007,156190000008,156190000009 |

| favorite_count | long int | 3 |

| useragent | string | Mozilla/5.0 (iPhone; CPU iPhone OS ...) |

| filter_level | string | PG-13 |

| lang | string | American |

Query 4: Tweet Server

● SET Request /q4?
tweetid=15213&op=set&seq=1&fields=repliedby,
reply_count&payload=MzM2NDE5MzE2NjUsMTc0Mjg5OTA1O
TksOTQ5MDczNzc5NjQsMzkzMjIxMzU4NjQsMTg0NDA4MDg5NT
UsNTE2MjU1MzMxOTgsOTI4MzA3NTgwNzQ=,Nw==

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

Query 4: Tweet Server

● GET Request /q4?
tweetid=15213&op=get&seq=2&fields=repliedby,
reply_count&payload=

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

MzM2NDE5MzE2NjUsMTc0Mjg5OTA1OTksOTQ5MDczNzc5NjQsM
zkzMjIxMzU4NjQsMTg0NDA4MDg5NTUsNTE2MjU1MzMxOTgsOT
I4MzA3NTgwNzQ=\n

Nw==\n

Query 4: Tweet Server

What’s due soon?
● Report at the end of Phase 2

○ Submission by 23:59 ET (Pittsburgh) Thur 03/31

○ Make sure you highlight failures and learning

○ If you didn’t do well, explain why

○ If you did, explain how

○ Cannot begin to stress how critical this is!!!!

● Phase 3 Development
○ Submission by 16:59 ET (Pittsburgh) Wed 04/13

■ Live Test from 6 PM to 10 PM ET

○ Fix Q1 - Q3 if you did not go well

○ New query Q4.

○ Heads up: Phase 3 counts for 60% of 15619Project grade

● Don’t blindly optimize for every component, identify the
bottlenecks using fine-grained profiling.

● Use caches wisely: caching in HBase and MySQL is obviously
important, but front-end cache will most likely fail during the Live
test.

● Get the whole picture of the database you are using, don’t just
Google and adopt “HBase/MySQL optimization techniques”
blindly.

● Review what we have learned in previous project modules
● Scale out
● Load balancing
● Replication and sharding

General Tips

Upcoming Deadlines

• Quiz 10 : Unit 5 - Module 18

– Due: 04/01/2016 11:59 PM Pittsburgh

• Project 3.5 : Data warehousing and OLAP

– Due: 04/03/2016 11:59 PM Pittsburgh

• 15619Project : Phase 2

– Live-test DNS due: 03/30/2016 3:59 PM Pittsburgh

– Code and report due: 03/31/2016 11:59 PM Pittsburgh

