
15-319 / 15-619
Cloud Computing

Recitation 12
April 05th, 2016

Overview
● Administrative issues

– Tagging, 15619Project, project code
● Last week’s reflection

– Project 3.5
– Unit 5 - Module 18
– Quiz 10

● This week’s schedule
– Project 4.1, Batch Processing with MapReduce
– Unit 5 - Module 19, 20
– Quiz 11

● Twitter Analytics: The 15619Project

Reminders

● Monitor AWS expenses regularly and tag all resources
○ Check your bill both on AWS and TPZ

● Piazza Guidelines
○ Please tag your questions appropriately
○ Search for an existing answer first

● Provide clean, modular and well documented code
○ Large penalties for not doing so.

○ Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

● Utilize Office Hours
○ We are here to help (but not to give solutions)

Project 3.5 : FAQs
Problem 1: Out-of-memory issue during partitioning

● Should make sure the partition is really necessary
● Creating a large number of partitions on a big table may

drain the datanode’s memory

Modules to Read
• UNIT 5: Distributed Programming and Analytics

Engines for the Cloud
– Module 18: Introduction to Distributed Programming

for the Cloud
– Module 19: Distributed Analytics Engines for the

Cloud: MapReduce
•Hadoop 1.0

•Hadoop 2.0 - YARN

– Module 20: Distributed Analytics Engines for the
Cloud: Spark

– Module 21: Distributed Analytics Engines for the
Cloud: GraphLab

Project 4

• Project 4.1, Batch Processing with MapReduce
– MapReduce Programming Using YARN

• Project 4.2

– Iterative Programming Using Apache Spark

• Project 4.3

– Stream Processing using Kafka/Samza

Introduction to MapReduce
• Definition: Programming model for processing large data sets

with a parallel, distributed algorithm on a cluster

• Phases of MapReduce:

•Map

•Shuffle

•Reduce

7

MapReduce - Introduced in Project 1

How many times does
the word “apple”
appear in all books in
Hunt Library?

I heard 6 “Apple”s !

Apple,1

Apple,1
Apple,1
Apple,1

Apple,1
Apple,1

8

MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

What if we want to count the number of
times all fruits appeared in these books?

You can have multiple aggregators, each one working on a distinct set of “fruits”. 9

MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple 6

Blueberry 3

Orange 3

Map Shuffle

Orange,1
Orange,1
Orange,1

Apple,1
Apple,1
Apple,1
Apple,1
Apple,1
Apple,1

Blueberry,1
Blueberry,1
Blueberry,1

Reduce

10

MapReduce Example

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple 6

Blueberry 3

Orange 3

Map Shuffle

Orange,1
Orange,1
Orange,1

Apple,1
Apple,1
Apple,1
Apple,1
Apple,1
Apple,1

Blueberry,1
Blueberry,1
Blueberry,1

Reduce

11

Input (K,V)

Map Output / Reduce Input
(K’,V’)

Output
(K’’,V’’)

Steps of a MapReduce job

• Map
• Shuffle
• Reduce
• Produce final output

12

Steps of MapReduce - 1

• Map
• Prepare input for mappers

• Split input into parts and assign them to mappers

• Map Tasks
• Each mapper will work on its portion of the data

• Output: key-value pairs
• Keys are used in Shuffling and Merge to find the Reducer that

handles it

• Values are messages sent from mapper to reducer

• e.g. (Apple, 1)

13

Steps of MapReduce - 2

• Shuffle
• Sort and group by key:

• Split keys and assign them to reducers (based on hashing)

• Each key will be assigned to exactly one reducer

• Reduce
• Input: mapper’s output (key-value pairs)
• Each reducer will work on one or more keys
• Output: the result needed

• Produce final output
• Collect all output from reducers
• Sort them by key

14

MapReduce Data Types - 1

• Mapper (default)
– Input: key-value pairs

• Key: byte offset of the line

• Value: the text content of the line

– Output: key-value pairs
• Key: specified by your program

• Value: specified by your program based on what content you
expect the reducer to receive as a list

(k1,v1) -> Mapper -> (k2,v2)

MapReduce Data Types - 2

• Reducer
– Input: key-value pairs

• A list of values for each key output from

the mapper

– Output: key-value pairs
• The desired result from your aggregation

(k2,list(v2)) -> Reducer -> (k3,v3)

GFS

MapReduce

BigTable

HDFS

MapReduce

HBase

Proprietary Open Source

MapReduce and Hadoop

• MapReduce
– A programming model for processing large data sets

using a parallel distributed algorithm
• Apache Hadoop

– A framework for running MapReduce applications on
a large cluster of commodity hardware

– Implements the MapReduce computational paradigm
– Uses HDFS for data storage
– Engineers with little knowledge of distributed

computing can write the code in a short period

MapReduce and HDFS

• Detailed workflow

HDFS - Distributed File System

• Paper
– The Hadoop Distributed File System, Konstantin

Shvachko, Hairong Kuang, Sanjay Radia, Robert
Chansler, Yahoo!, 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST)

• Purpose
– Serve as the distributed storage to run Hadoop’s

MapReduce applications
– An open-source framework which can be used by

different clients with different needs

HDFS - Distributed File System

• Hadoop Distributed File System

• Open source version of Google File System

Project 4.1 - Input Text Predictor

• Suggest words based on phrases already typed

Project 4.1

• Steps for Input Text Predictor
– Clean the input data
– Perform the N-Gram count
– Build the Statistical Language Model
– Predict the next word given a phrase

• Have to use a Custom JAR in EMR

– CANNOT use EMR Streaming

Construct an Input Text Predictor - 1

1. Given a language corpus
– Wikipedia dataset (~8.6 GB)

2. Construct an n-gram model of the corpus
– An n-gram is a phrase with n contiguous words
– For example a set of 1,2,3,4,5-grams with counts:

• this 1000
• this is 500
• this is a 125
• this is a cloud 60
• this is a cloud computing 20

Construct an Input Text Predictor - 2

3. Build a Statistical Language Model to calculate
the probability of a word appearing after a phrase

4. Load the probability data to HBase and predict
the next word based on the probabilities

P4.1 Bonus

• MapReduce for word auto-completion
– Given prefix, suggest the most possible words
– Example: given “car”,

•Possible words are: card, cart, Carnegie…
•Suggest the top five words with highest probability

– Store probability data to HBase and connect our front-
end to submit

• Worth 10%

Recommendations

• Test for correctness with a small dataset first

• Don’t start a new cluster for every job
– EMR will charge you one hour of usage for instances

even though your EMR job failed to start

• Version of Hadoop
– It should match the version shown in the EMR AMI

• Start early and try the bonus

Using a Custom Jar in P4.1

• What is a custom JAR
– Customize your java MapReduce program

– Run the MapReduce JAR in EMR

• Why custom JAR

– More resources: HDFS/HBASE/S3

– More job configuration flexibility

– More control of how the resources are utilized

Upcoming Deadlines

● Quiz 11: Unit 5 - Module 19, 20

○ Due: 04/08/2016 11:59 PM Pittsburgh

● Project 4.1: Batch Processing with MapReduce

○ Due: 04/10/2016 11:59 PM Pittsburgh

● 15619Project: Phase 3

○ Live-test DNS due: 04/13/2016 3:59 PM Pittsburgh

○ Code and report due: 04/14/2016 11:59 PM Pittsburgh

Questions?

tWITTER DATA ANALYTICS:
15619 PROJECT

15619 Project Phase 3 Deadlines

Thursday
2/25/2015

00:00:01 ET

Wednesday
3/31/2015

23:59:59 ET

15619 Project
Phase 1 & 2 (Live
Test 1 and Code +

Report
Submissions)

Wednesday
4/13/2015

23:59:59 ET

Thursday
4/14/2015

23:59:59 ET

15619 Project
Phase 3

Q4
Development

15619 Project
Phase 3

Code & Report
Due

15619 Project
Phase 3

Live Test

Wednesday
4/13/2015

15:59:59 EDT

WE ARE HERE

Start Early!

15619Project Time Table

33

Phase (and query
due)

Start Deadline Code and Report Due

Phase 1 Part 1
● Q1, Q2

Thursday 02/25/2016
00:00:01 EST

Wednesday 03/16/2016
23:59:59 EDT

Thursday 03/17/2016
23:59:59 EDT

Phase 2
● Q1, Q2, Q3

Thursday 03/17/2016
00:00:01 EDT

Wednesday 03/30/2016
15:59:59 EDT

Phase 2 Live Test
(Hbase/MySQL)

● Q1, Q2, Q3

Wednesday 03/30/2016
18:00:01 EDT

Wednesday 03/30/2016
23:59:59 EDT

Thursday 03/31/2016
23:59:59 EDT

Phase 3
● Q1, Q2, Q3, Q4

Thursday 03/31/2016
00:00:01 EDT

Wednesday 04/13/2016

15:59:59 EDT

Phase 3 Live Test
● Q1, Q2, Q3, Q4

Wednesday 04/13/2016

18:00:01 EDT
Wednesday 04/13/2016
23:59:59 EDT

Thursday 04/13/2016
23:59:59 EDT

Results of Phase 2 Live Test
Congratulations to the teams on the leaderboard!

 MySQL HBase:

MyLittlePony 49.94

ccfighter 43.69

Hardship 42.41

MIB 41.14

RenRenYouOffer 36.13

SilverLining 35.44

YouKnowNothingJonSnow 35.39

YaoBuNengTing 35.35

elder 34.94

GiveSomeColorToCC 32.07

Apollo 50

elder 50

MyHeartIsInTheWork 50

Sugoyi 50

OnePiece 50

JeanCloudVanDamme 50

SilverLining 50

ThreeKings 50

DaXiuZuiNiuBi 49.66

SteinsGate 49.51

Common Issues

● Unexpected input or strange characters in
the parameter fields?
Remember that the live-test is a simulation of real world
traffic. Try to make your front-end more robust so that it
can handle any unexpected input without failure.

● AWS outage during live-test
AWS Virginia data center encountered an outage in
EC2 and ELB. Spot instances were terminated, API
calls were throttled, could not start new instances.
● 14 teams were allowed to participate in a make-up.

● One last query (Q4)
○ No ETL!

○ Serving write requests

○ Front end caching will not work during the live test

○ Two types of requests, set & get

● Live Test!
■ Warmup, Q1, Q2, Q3, Q4, Mixed Q1-Q4

● Each for 30 min

■ Choose HBase or MySQL
● Submit One DNS

Phase 3

Query 4: Tweet Server

There are five different parameters in the request URL for a

request to /q4.

● tweetid (tweet ID)

● op (operation type)

● seq (sequence number)

● fields (comma separated fields involved in the request)

● payload (comma separated payload encoded in Base64)

Execute the requests of a tweetid by the seq (sequence number)

| field | type | example |

|-----------------|------------------------|---|

| tweetid | long int | 15213 |

| userid | long int | 156190000001 |

| username | string | CloudComputing |

| timestamp | string | Mon Feb 15 19:19:57 2016 |

| text | string | Welcome to P4!#CC15619#P3 |

| hashtag | comma separated string | CC15619,P3 |

| ip | string | 128.2.217.13 |

| coordinates | string | -75.14310264,40.05701649 |

| repliedby | comma separated userid | 156190000001,156190000002,156190000003 |

| reply_count | long int | 3 |

| mentioned | comma separated userid | 156190000004,156190000005,156190000006 |

| mentioned_count | long int | 3 |

| favoritedby | comma separated userid | 156190000007,156190000008,156190000009 |

| favorite_count | long int | 3 |

| useragent | string | Mozilla/5.0 (iPhone; CPU iPhone OS ...) |

| filter_level | string | PG-13 |

| lang | string | American |

Query 4: Tweet Server

● SET Request /q4?
tweetid=15213&op=set&seq=1&fields=repliedby,
reply_count&payload=MzM2NDE5MzE2NjUsMTc0Mjg5OTA1O
TksOTQ5MDczNzc5NjQsMzkzMjIxMzU4NjQsMTg0NDA4MDg5NT
UsNTE2MjU1MzMxOTgsOTI4MzA3NTgwNzQ=,Nw==

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

Query 4: Tweet Server

● GET Request /q4?
tweetid=15213&op=get&seq=2&fields=repliedby,
reply_count&payload=

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

MzM2NDE5MzE2NjUsMTc0Mjg5OTA1OTksOTQ5MDczNzc5NjQsM
zkzMjIxMzU4NjQsMTg0NDA4MDg5NTUsNTE2MjU1MzMxOTgsOT
I4MzA3NTgwNzQ=\n

Nw==\n

Query 4: Tweet Server

Please ensure that you maintain strong consistency for Q4.

● Don’t blindly optimize for every component, identify the bottlenecks
using fine-grained profiling

● Use caches wisely: cache in HBase and MySQL is obviously
important, storing everything in the frontend cache will lead to
failure during the live test

● Review what we have learned in previous project modules
● Scale out
● Load balancing
● Replication and sharding
● Strong consistency (correctness is very important in Q4)

● Look at the feedback of your Phase 1 report!

General Hints

● MySQL DBs behind an ELB may require a forwarding

mechanism.

● Consider forwarding the requests but pay attention to

latency.

● Consider batch writes.

● Think about effective distributed caching techniques.

● Don’t block your frontend server.

Q4 Hints

Phase 3 Live Test

Time Value Target Weight

6:00 pm - 6:30 pm Warm-up (Q1 only) - 0%

6:30 pm - 7:00 pm Q1 27000 5%

7:00 pm - 7:30 pm Q2 10000 15%

7:30 pm - 8:00 pm Q3 6000 15%

8:00 pm - 8:30 pm Q4 10000 15%

8:30 pm - 9:00 pm Mixed Reads(Q1,Q2,Q3,
Q4)

TBD 5+5+5+5 = 20%

Phase 3 report is worth 30% of the Phase 3 grade.

15619 Project Phase 3 Deadlines

Thursday
2/25/2015

00:00:01 ET

Wednesday
3/31/2015

23:59:59 ET

15619 Project
Phase 1 & 2 (Live
Test 1 and Code +

Report
Submissions)

Wednesday
4/13/2015

23:59:59 ET

Thursday
4/14/2015

23:59:59 ET

15619 Project
Phase 3

Q4
Development

15619 Project
Phase 3

Code & Report
Due

15619 Project
Phase 3

Live Test

Wednesday
4/13/2015

15:59:59 EDT

WE ARE HERE

Start Early!

What’s due soon?

● Phase 3 Development
○ Submission by 15:59 ET (Pittsburgh) Wed 04/13

■ Live Test from 6 PM to 10 PM EDT

○ Fix Q1 - Q3 if you did not go well

○ New query Q4

○ Phase 3 counts for 60% of the 15619Project grade

● Phase 3 Report
○ Submission 23:59:59 ET (Pittsburgh) Thur 04/14

○ Explain in detail the strategies you used

○ Difficulties you encountered even if you didn’t get

a good score

