# 15-319 / 15-619 Cloud Computing

Recitation 12 April 05<sup>th</sup>, 2016

#### Overview

#### Administrative issues

Tagging, 15619Project, project code

#### • Last week's reflection

- Project 3.5
- Unit 5 Module 18
- Quiz 10

#### • This week's schedule

- Project 4.1, Batch Processing with MapReduce
- Unit 5 Module 19, 20
- Quiz 11

#### • Twitter Analytics: The 15619Project

#### Reminders

- Monitor AWS expenses regularly and tag all resources
  - $\circ$  Check your bill both on AWS and TPZ
- Piazza Guidelines
  - Please tag your questions appropriately
  - Search for an existing answer first
- Provide clean, modular and well documented code
  - <u>Large</u> penalties for not doing so.
  - <u>Double check</u> that your code is submitted!! (verify by downloading it from TPZ from the submissions page)
- Utilize Office Hours
  - We are here to help (but not to give solutions)

### Project 3.5 : FAQs

<u>Problem 1</u>: Out-of-memory issue during partitioning

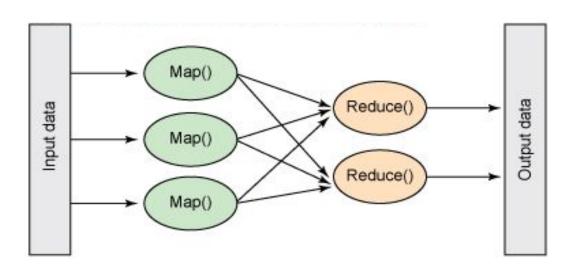
- Should make sure the partition is really necessary
- Creating a large number of partitions on a big table may drain the datanode's memory

#### Modules to Read

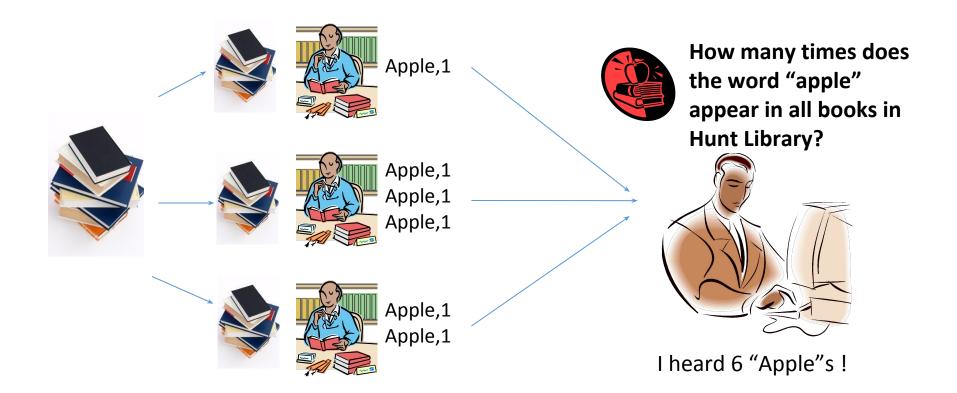
- UNIT 5: Distributed Programming and Analytics Engines for the Cloud
  - Module 18: Introduction to Distributed Programming for the Cloud
  - Module 19: Distributed Analytics Engines for the Cloud: MapReduce



- •Hadoop 1.0
- •Hadoop 2.0 YARN
- Module 20: Distributed Analytics Engines for the Cloud: Spark

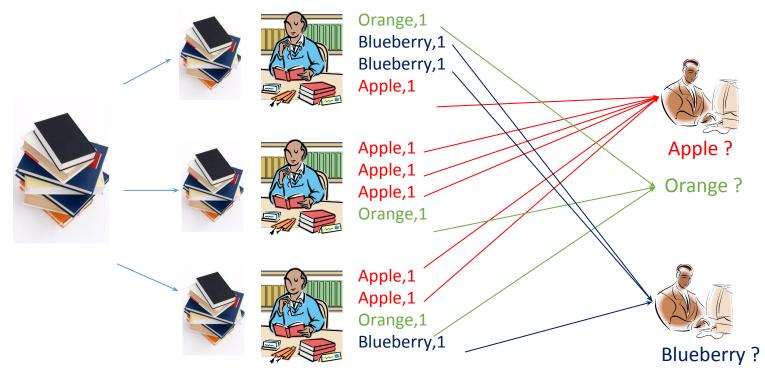



### Project 4


- Project 4.1, Batch Processing with MapReduce
   MapReduce Programming Using YARN
- Project 4.2
  - Iterative Programming Using Apache Spark
- Project 4.3
  - Stream Processing using Kafka/Samza

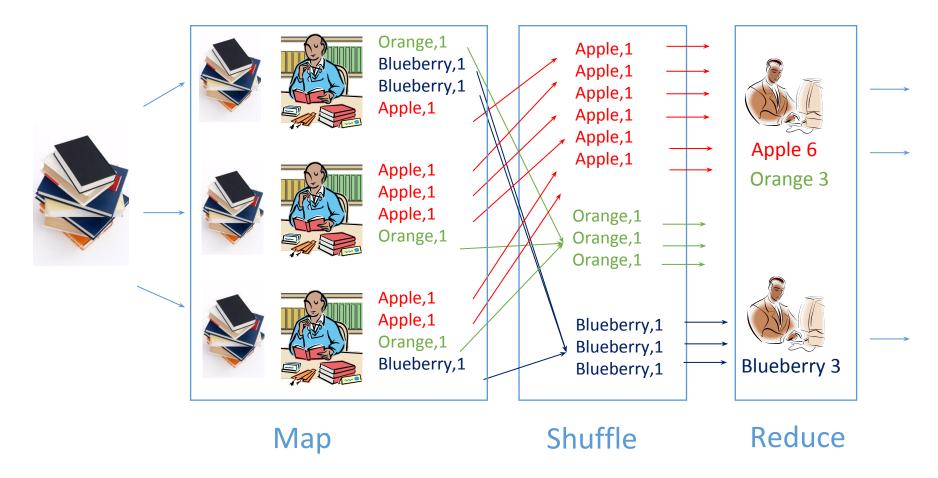
### Introduction to MapReduce

- **Definition**: Programming model for processing <u>large data sets</u> with a <u>parallel</u>, <u>distributed</u> algorithm on a cluster
- Phases of MapReduce:
  - •Map
  - •Shuffle
  - •Reduce

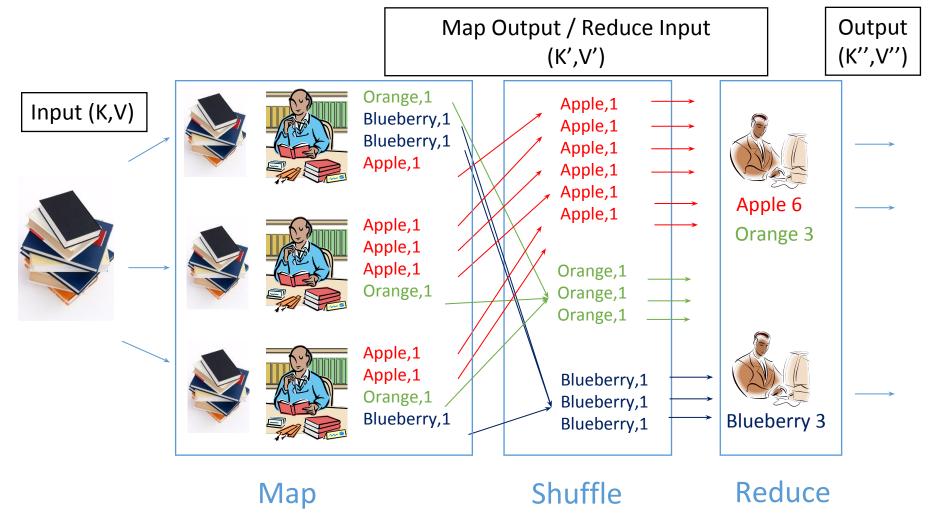



## MapReduce - Introduced in Project 1




#### MapReduce Example

# What if we want to count the number of times all fruits appeared in these books?




You can have multiple aggregators, each one working on a distinct set of "fruits". 9

#### MapReduce Example



#### MapReduce Example



## Steps of a MapReduce job

- Map
- Shuffle
- Reduce
- Produce final output

### Steps of MapReduce - 1

- Map
  - Prepare input for mappers
    - Split input into parts and assign them to mappers
  - Map Tasks
    - Each mapper will work on its portion of the data
    - Output: **key-value pairs** 
      - Keys are used in Shuffling and Merge to find the Reducer that handles it
      - Values are messages sent from mapper to reducer
      - e.g. (Apple, 1)

### Steps of MapReduce - 2

- Shuffle
  - Sort and group by key:
    - Split keys and assign them to reducers (based on hashing)
    - Each key will be assigned to exactly one reducer
- Reduce
  - Input: mapper's output (key-value pairs)
  - Each reducer will work on one or more keys
  - Output: the result needed
- Produce final output
  - Collect all output from reducers
  - Sort them by key

### MapReduce Data Types - 1

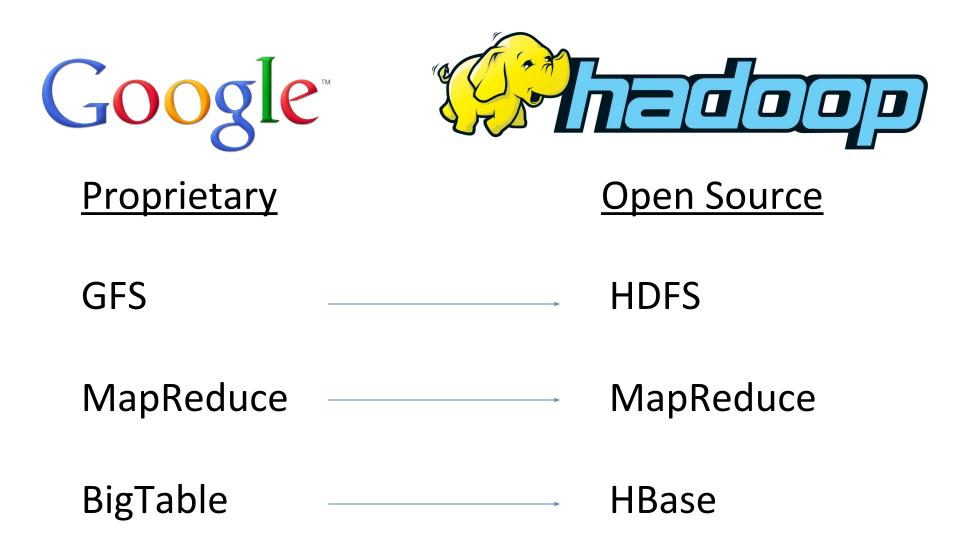
- Mapper (default)
  - Input: key-value pairs
    - Key: byte offset of the line
    - Value: the text content of the line
  - Output: key-value pairs
    - Key: specified by your program
    - Value: specified by your program based on what content you expect the reducer to receive as a list

(k1,v1) -> Mapper -> (k2,v2)



### MapReduce Data Types - 2

- Reducer
  - Input: key-value pairs

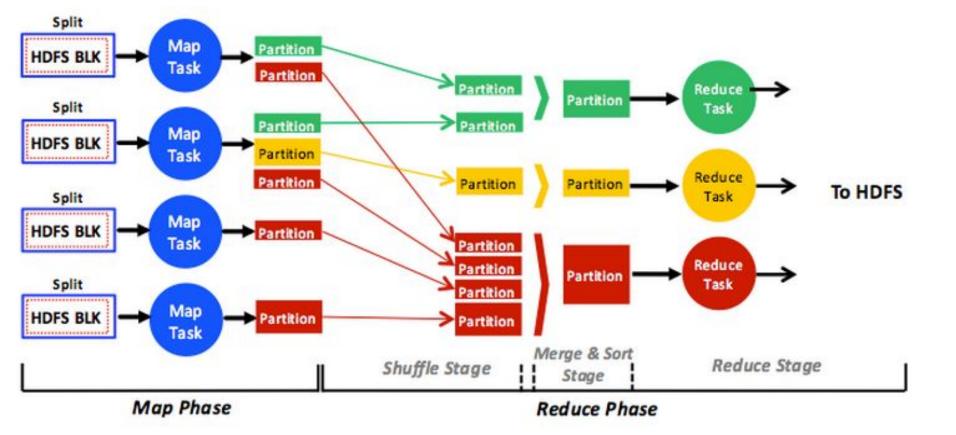



A list of values for each key output from

the mapper

- Output: key-value pairs
  - The desired result from your aggregation

(k2,list(v2)) -> Reducer -> (k3,v3)

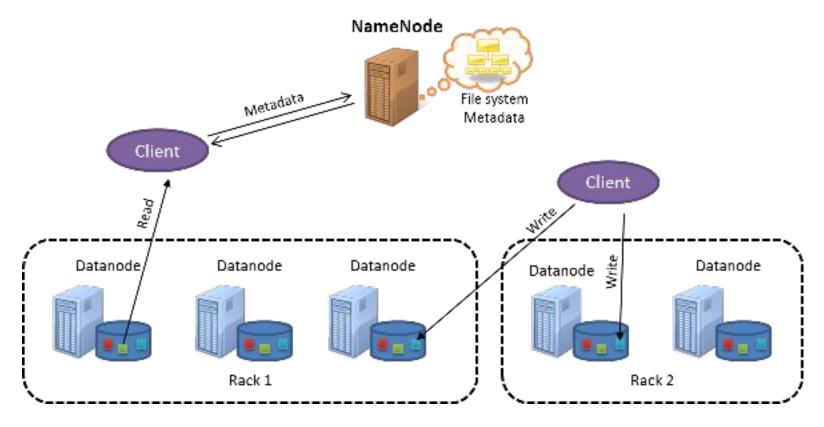



### MapReduce and Hadoop

- MapReduce
  - A programming model for processing large data sets using a parallel distributed algorithm
- Apache Hadoop
  - A framework for running MapReduce applications on a large cluster of commodity hardware
  - Implements the MapReduce computational paradigm
  - Uses HDFS for data storage
  - Engineers with little knowledge of distributed computing can write the code in a short period

#### MapReduce and HDFS

Detailed workflow




## HDFS - Distributed File System

- Paper
  - The Hadoop Distributed File System, Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, Yahoo!, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)
- Purpose
  - Serve as the distributed storage to run Hadoop's MapReduce applications
  - An open-source framework which can be used by different clients with different needs

#### HDFS - Distributed File System

- Hadoop Distributed File System
- Open source version of Google File System



#### Project 4.1 - Input Text Predictor

• Suggest words based on phrases already typed

|                                  |            | 6 <u></u>                                                                                                              |                                                             |   |
|----------------------------------|------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|
| • י 💵 🔉 📽 🖇 📶 🕯 11:42 AM 🛛 🛛 🕞 🔾 | ogle       | wikipedia                                                                                                              | Ŷ                                                           | Q |
| Enter recipient                  | 0          | wikipedia                                                                                                              |                                                             |   |
| Had                              |            | wikipedia game<br>wikipedia español                                                                                    |                                                             |   |
|                                  |            | wikipedia api                                                                                                          | I'm Feeling Lucky »                                         |   |
| 35773                            |            | About 1.010.000.000 results (0.29 seconds)                                                                             |                                                             |   |
| Send                             |            |                                                                                                                        |                                                             |   |
| 0                                |            |                                                                                                                        |                                                             |   |
| His Have He Had Has              | 15319      |                                                                                                                        |                                                             | Q |
| Had a chance                     | 15319 got  | t me a job at google                                                                                                   |                                                             |   |
| Had been                         | 15319 sea  | rch engine is better than bing                                                                                         |                                                             |   |
| a s d f g h j k l                | 15319 priz | ze for winning project                                                                                                 |                                                             |   |
| Hadn't BACK                      | 15319 TAs  | s hoodie                                                                                                               |                                                             |   |
| Had a chance to                  | 15319 hov  | w many more projects are there?                                                                                        |                                                             |   |
| Haddock 🔄 🦊                      | 15319 gra  | ce days                                                                                                                |                                                             |   |
|                                  | 15319 ext  | ensions                                                                                                                |                                                             |   |
|                                  | 15319 che  | at checking team hired by NSA                                                                                          |                                                             |   |
|                                  |            | sq ft · 3 bed/3 ba · 1800 sq ft lot · \$235,000<br>319 SW 9th Way, Miami, FL 33194 property records on realtor.com(R). | 15319 Maple Lane Markham IL<br>15319 Dittmar Dr Whittier CA |   |

### Project 4.1

- Steps for Input Text Predictor
  - Clean the input data
  - Perform the N-Gram count
  - Build the Statistical Language Model
  - Predict the next word given a phrase
- Have to use a Custom JAR in EMR

#### - CANNOT use EMR Streaming

#### Construct an Input Text Predictor - 1

- 1. Given a language corpus
  - Wikipedia dataset (~8.6 GB)
- 2. Construct an n-gram model of the corpus
  - An n-gram is a phrase with n contiguous words
  - For example a set of 1,2,3,4,5-grams with counts:
    - this 1000
    - this is 500
    - this is a 125
    - this is a cloud 60
    - this is a cloud computing 20

#### Construct an Input Text Predictor - 2

3. Build a Statistical Language Model to calculate the probability of a word appearing after a phrase

$$Pr(word | phrase) = \frac{Count(phrase + word)}{Count(phrase)}$$

$$\Pr\left( ext{is} \mid ext{this}
ight) \ = \ rac{ ext{Count(this is)}}{ ext{Count(this)}} = rac{500}{1000} = 0.5$$

$$\Pr(a \mid \text{this is}) = \frac{\text{Count(this is }a)}{\text{Count(this is})} = \frac{125}{500} = 0.25$$

4. Load the probability data to HBase and predict the next word based on the probabilities

#### P4.1 Bonus

- MapReduce for word auto-completion
  - Given prefix, suggest the most possible words
  - Example: given "car",
    - •Possible words are: card, cart, Carnegie...
    - •Suggest the top five words with highest probability
  - Store probability data to HBase and connect our frontend to submit
- Worth 10%

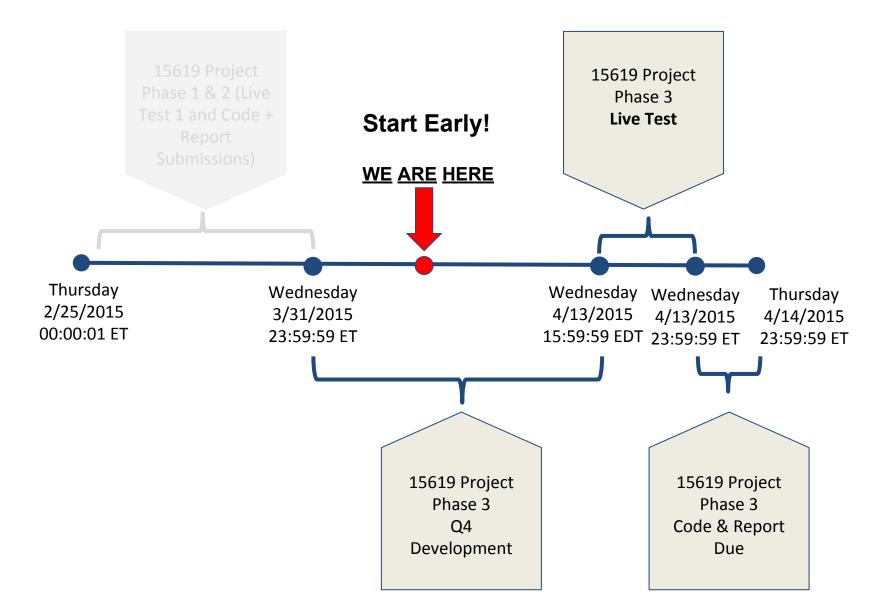
#### Recommendations

- Test for correctness with a small dataset first
- **Don't** start a new cluster for every job
  - EMR will charge you one hour of usage for instances even though your EMR job failed to start
- Version of Hadoop
  - It should match the version shown in the EMR AMI
- Start early and try the bonus

### Using a Custom Jar in P4.1

- What is a custom JAR
  - Customize your java MapReduce program
  - Run the MapReduce JAR in EMR
- Why custom JAR
  - More resources: HDFS/HBASE/S3
  - More job configuration flexibility
  - More control of how the resources are utilized

#### **Upcoming Deadlines**


- Quiz 11: Unit 5 Module 19, 20
  - O Due: 04/08/2016 11:59 PM Pittsburgh
- Project 4.1: Batch Processing with MapReduce
  - Due: 04/10/2016 11:59 PM Pittsburgh
- 15619Project: Phase 3
  - Live-test DNS due: 04/13/2016 3:59 PM Pittsburgh
  - Code and report due: 04/14/2016 11:59 PM Pittsburgh



#### **Questions?**

#### TWITTER DATA ANALYTICS: 15619 PROJECT

#### 15619 Project Phase 3 Deadlines



### 15619Project Time Table

| Ľ | + | • |   | ł | ተ |
|---|---|---|---|---|---|
|   |   |   |   |   |   |
|   |   |   | X |   |   |
|   |   |   |   |   |   |
| Å |   |   |   |   |   |
| Ч |   |   |   |   | X |

| Phase (and query due)                              | Start                                         | Deadline                                      | Code and Report Due                          |
|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|
| Phase 1 Part 1                                     | Thursday 02/25/2016                           | Wednesday 03/16/2016                          | Thursday 03/17/2016                          |
| • Q1, Q2                                           | 00:00:01 EST                                  | 23:59:59 E <u>D</u> T                         | 23:59:59 E <u>D</u> T                        |
| Phase 2                                            | Thursday 03/17/2016                           | Wednesday 03/30/2016                          |                                              |
| • Q1, Q2, Q3                                       | 00:00:01 E <u>D</u> T                         | 15:59:59 E <u>D</u> T                         |                                              |
| Phase 2 Live Test<br>(Hbase/MySQL)<br>• Q1, Q2, Q3 | Wednesday 03/30/2016<br>18:00:01 E <u>D</u> T | Wednesday 03/30/2016<br>23:59:59 E <u>D</u> T | Thursday 03/31/2016<br>23:59:59 E <u>D</u> T |
| Phase 3                                            | Thursday 03/31/2016                           | Wednesday 04/13/2016                          |                                              |
|                                                    | 00:00:01 E <u>D</u> T                         | 15:59:59 EDT                                  |                                              |
| Phase 3 Live Test                                  | Wednesday 04/13/2016                          | Wednesday 04/13/2016                          | Thursday 04/13/2016                          |
| • Q1, Q2, Q3, Q4                                   | 18:00:01 EDT                                  | 23:59:59 E <u>D</u> T                         | 23:59:59 E <u>D</u> T                        |

#### Results of Phase 2 Live Test

#### Congratulations to the teams on the leaderboard!

MySQL

| Apollo             | 50    |
|--------------------|-------|
| elder              | 50    |
| MyHeartIsInTheWork | 50    |
| Sugoyi             | 50    |
| OnePiece           | 50    |
| JeanCloudVanDamme  | 50    |
| SilverLining       | 50    |
| ThreeKings         | 50    |
| DaXiuZuiNiuBi      | 49.66 |
| SteinsGate         | 49.51 |
| L                  |       |

HBase:

| MyLittlePony          | 49.94 |
|-----------------------|-------|
| ccfighter             | 43.69 |
| Hardship              | 42.41 |
| MIB                   | 41.14 |
| RenRenYouOffer        | 36.13 |
| SilverLining          | 35.44 |
| YouKnowNothingJonSnow | 35.39 |
| YaoBuNengTing         | 35.35 |
| elder                 | 34.94 |
| GiveSomeColorToCC     | 32.07 |

#### **Common Issues**

 Unexpected input or strange characters in the parameter fields?

Remember that the live-test is a simulation of real world traffic. Try to make your front-end more robust so that it can handle any unexpected input without failure.

- AWS outage during live-test
   AWS Virginia data center encountered an outage in EC2 and ELB. Spot instances were terminated, API calls were throttled, could not start new instances.
  - 14 teams were allowed to participate in a make-up.

#### Phase 3

- One last query (Q4)
  - No ETL!
  - Serving write requests
  - Front end caching will not work during the live test
  - Two types of requests, set & get
- Live Test!
  - Warmup, Q1, Q2, Q3, Q4, Mixed Q1-Q4
    - Each for 30 min
  - Choose HBase or MySQL
    - Submit One DNS

There are five different parameters in the request URL for a request to /q4.

- tweetid (tweet ID)
- op (operation type)
- seq (sequence number)
- fields (comma separated fields involved in the request)
- payload (comma separated payload encoded in Base64)

Execute the requests of a tweetid by the seq (sequence number)

| I | field           | I | type                   |   | example                                | I |
|---|-----------------|---|------------------------|---|----------------------------------------|---|
|   |                 |   |                        | - |                                        | • |
|   | tweetid         | I | long int               | I | 15213                                  |   |
|   | userid          | I | long int               | I | 15619000001                            |   |
|   | username        | I | string                 | I | CloudComputing                         |   |
|   | timestamp       | I | string                 | I | Mon Feb 15 19:19:57 2016               |   |
|   | text            | I | string                 | I | Welcome to P4!#CC15619#P3              |   |
|   | hashtag         | I | comma separated string | I | CC15619,P3                             |   |
|   | ip              | I | string                 | I | 128.2.217.13                           |   |
|   | coordinates     | I | string                 | I | -75.14310264,40.05701649               |   |
|   | repliedby       | I | comma separated userid | I | 156190000001,156190000002,156190000003 |   |
|   | reply_count     | I | long int               | I | 3                                      |   |
|   | mentioned       | I | comma separated userid | I | 156190000004,156190000005,156190000006 |   |
|   | mentioned_count | I | long int               | I | 3                                      |   |
|   | favoritedby     | I | comma separated userid | I | 156190000007,156190000008,156190000009 |   |
|   | favorite_count  | I | long int               | I | 3                                      |   |
|   | useragent       | I | string                 | I | Mozilla/5.0 (iPhone; CPU iPhone OS)    |   |
|   | filter_level    | I | string                 |   | PG-13                                  |   |
|   | lang            | I | string                 |   | American                               |   |

#### • SET Request /q4?

tweetid=15213&op=set&seq=1&fields=repliedby, reply\_count&payload=MzM2NDE5MzE2NjUsMTc0Mjg5OTA10 TksOTQ5MDczNzc5NjQsMzkzMjIxMzU4NjQsMTg0NDA4MDg5NT UsNTE2MjU1MzMxOTgsOTI4MzA3NTgwNzQ=,Nw==

#### • Response

TEAMID, TEAM\_AWS\_ACCOUNT\_ID\n success\n

 GET Request /q4? tweetid=15213&op=get&seq=2&fields=repliedby, reply\_count&payload=

• Response

```
TEAMID, TEAM_AWS_ACCOUNT_ID\n
MzM2NDE5MzE2NjUsMTc0Mjg5OTA1OTksOTQ5MDczNzc5NjQsM
zkzMjIxMzU4NjQsMTg0NDA4MDg5NTUsNTE2MjU1MzMxOTgsOT
I4MzA3NTgwNzQ=\n
```

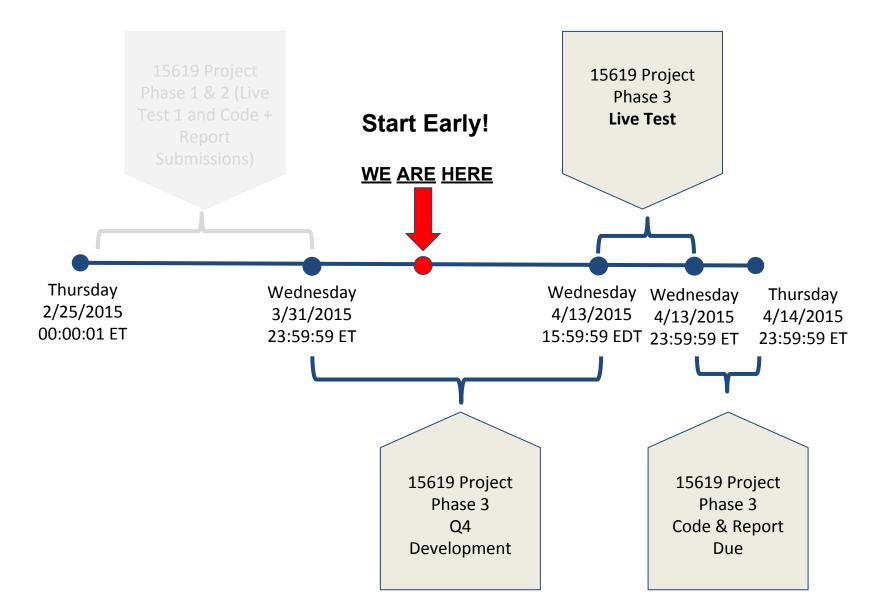
Nw==∖n

Please ensure that you maintain strong consistency for Q4.

### **General Hints**

- Don't blindly optimize for every component, identify the bottlenecks using fine-grained profiling
- Use caches wisely: cache in HBase and MySQL is obviously important, storing everything in the frontend cache will lead to failure during the live test
- Review what we have learned in previous project modules
  - Scale out
  - Load balancing
  - Replication and sharding
  - Strong consistency (correctness is very important in Q4)
- Look at the feedback of your Phase 1 report!

#### Q4 Hints


- MySQL DBs behind an ELB may require a forwarding mechanism.
- Consider forwarding the requests but pay attention to latency.
- Consider batch writes.
- Think about effective distributed caching techniques.
- Don't block your frontend server.

#### Phase 3 Live Test

| Time              | Value                        | Target | Weight        |
|-------------------|------------------------------|--------|---------------|
| 6:00 pm - 6:30 pm | Warm-up (Q1 only)            | -      | 0%            |
| 6:30 pm - 7:00 pm | Q1                           | 27000  | 5%            |
| 7:00 pm - 7:30 pm | Q2                           | 10000  | 15%           |
| 7:30 pm - 8:00 pm | Q3                           | 6000   | 15%           |
| 8:00 pm - 8:30 pm | Q4                           | 10000  | 15%           |
| 8:30 pm - 9:00 pm | Mixed Reads(Q1,Q2,Q3,<br>Q4) | TBD    | 5+5+5+5 = 20% |

Phase 3 report is worth 30% of the Phase 3 grade.

#### 15619 Project Phase 3 Deadlines



#### What's due soon?

- Phase 3 Development
  - Submission by 15:59 ET (Pittsburgh) Wed 04/13

#### Live Test from 6 PM to 10 PM EDT

- Fix Q1 Q3 if you did not go well
- New query Q4
- Phase 3 counts for **60%** of the 15619Project grade

#### Phase 3 Report

- Submission 23:59:59 ET (Pittsburgh) Thur 04/14
- Explain in detail the strategies you used
- Difficulties you encountered even if you didn't get a good score