
15-319 / 15-619
Cloud Computing

Recitation 13

April 12th 2016

Overview

• Last week’s reflection
– Project 4.1
– Quiz 11

• Budget issues
– Tagging, 15619Project

• This week’s schedule
– Unit 5 - Modules 21
– Project 4.2
– 15619Project Phase 3

• Spark Demo
• Twitter Analytics: The 15619Project

Reminders

● Monitor AWS expenses regularly and tag all resources
○ Check your bill (Cost Explorer > filter by tags)

● Piazza Guidelines
○ Please tag your questions appropriately
○ Search for an existing answer first

● Provide clean, modular and well documented code
○ Large penalties for not doing so

○ Double check that your code is submitted!! (verify by
downloading it from TPZ from the submissions page)

● Utilize Office Hours
○ We are here to help (but not to give solutions)

● Use the team AWS account and tag the 15619Project

resources carefully

Project 4.1 FAQ
• End-to-End Application using MapReduce,

H-Base and web frontend
• Text cleaning -> NGrams -> Language Model
• Web app querying HBase
• Extending ideas for word auto-completion

• FAQs
• Ambiguity in data cleaning

• Idea: exclude content that is not part of human language

• Unable to load data into HBase from Reducer,

MapReduce program hangs randomly

• Use the correct jars, learn to manually pack your JAR

• Test on small datasets first
• Secret to MapReduce: Start small

Module to Read
• UNIT 5: Distributed Programming and Analytics

Engines for the Cloud
– Module 18: Introduction to Distributed Programming

for the Cloud
– Module 19: Distributed Analytics Engines for the

Cloud: MapReduce
– Module 20: Distributed Analytics Engines for the

Cloud: Spark
– Module 21: Distributed Analytics Engines for the

Cloud: GraphLab (open now)
– Module 22: Message Queues and Stream Processing

(opens on 4/16/2016)

Project 4

• Project 4.1
– MapReduce Programming Using YARN

• Project 4.2

– Iterative Programming Using Apache Spark

• Project 4.3

– Stream Processing using Kafka/Samza

Typical MapReduce Job

• Simplistic view of a MapReduce job

• You simply write code for the
– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output

Iterative MapReduce Jobs

• Some applications require iterative processing
• Eg: Machine Learning, etc.

• MapReduce: Data is always spilled to disk

– Added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration

Resilient Distributed Datasets (RDDs)

• RDDs
– can be in-memory or on disk
– are read-only objects
– are partitioned across the cluster

•partitioned across machines based on a range
or the hash of a key in each record

Operations on RDDs

• Loading
>>>input_RDD = sc.textFile("text.file")

• Transformation
– Apply an operation and derive a new RDD
>>>transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

• Action
– Computations on an RDD that return a single object
>>>print "Number of “abcd”:" + transform_RDD.count()

RDDs and Fault Tolerance

• Actions create new RDDs
• Instead of replication, recreate RDDs on failure
• Use RDD lineage

– RDDs store the transformations required to bring
them to current state

– Provides a form of resilience even though they
can be in-memory

The Spark Framework

Spark Ecosystem

• Spark SQL
– Allows running of SQL-like queries against RDDs

• Spark Streaming
– Run spark jobs against streaming data

• MLlib
– Machine learning library

• GraphX
– Graph-parallel framework

https://spark.apache.org/sql/
https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://spark.apache.org/graphx/

Project 4.2

• Use Spark to analyze the
Twitter social graph
• Number of nodes and

edges
• Number of followers for

each user
• Run PageRank to compute

the influence of users
• Fast runs get a bonus

Project 4.2 - Overview

ClientFront EndBack End

Twitter Graph

3. PageRank

• Use the Twitter social graph dataset
• Analyze the social graph with Spark
• Find the influence of users and rank them with

PageRank

2. # followers

Project 4.2 - Three Parts

1. Enumerate the Twitter Social Graph
– Find the number of nodes and edges
– Edges in the graph are directed. (u, v) and

(v, u) should be counted as two edges

2. Find the number of followers for each user

3. Rank each user by influence
– Run PageRank with 10 iterations
– Need to deal with dangling nodes

PageRank

• Give pages ranks (scores) based on links to them
• A page that has:

– Links from many pages ⇒ high rank
– Link from a high-ranking page ⇒ high rank

"PageRank-hi-res". Licensed under CC BY-SA 2.5 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#/media/File:PageRank-hi-res.png

PageRank

● For each Page i in dataset, Rank of i can be computed:

● Iterate for 10 iterations
● Formula to be implemented for 4.2 is slightly more

complex. Read carefully!!!

PageRank in Spark (Scala)
(Note: This is a simpler version of PageRank, than P4.2)

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

Launching a Spark Cluster

• Use the Spark-EC2 scripts
• Command line options to specify instance

types and spot pricing
• Spark is an in-memory system

– test with a single instance first
• Develop and test your scripts on a portion of

the dataset before launching a cluster

Spark Shell

• Like the python shell

• Run commands interactively

• Demo in second half of recitation

• On the master, execute (from /root)
– ./spark/bin/spark-shell
– ./spark/bin/pyspark

Grading

● Submit your work in the submitter instance
● Don’t forget to submit your code
● For Task 1

○ Put your answers in the answer file
○ Run submitter to upload your answer

● For Task 2
○ Load your result into the follower table in database
○ Run the webserver and use submitter to submit

● For Task 3
○ Load your result into the pagerank table in database
○ Run the webserver and use submitter to submit
○ Bonus for execution times < 1800 seconds

■ No shortcuts!!!

GraphLab Bonus

● Additional 5% bonus for running PageRank
on GraphLab

● Simply launch a cluster and run the existing
implementation of PageRank

● Easiest 5% you’ll ever make

● GraphLab is a part of Quiz 12, so dig in!!!

Upcoming Deadlines

● Project 4.2 : Iterative Programming with Spark

○ Due: 04/17/2016 11:59 PM Pittsburgh

● 15619Project : Phase 3

○ Live-test due: 04/13/2016 3:59 PM Pittsburgh

○ Code and report due: 04/14/2016 11:59 PM Pittsburgh

Questions?

tWITTER DATA ANALYTICS:
15619 PROJECT

15619 Project Phase 3 Deadlines

Thursday
2/25/2015

00:00:01 ET

Wednesday
3/31/2015

23:59:59 ET

15619 Project
Phase 1 & 2 (Live
Test 1 and Code +

Report
Submissions)

Wednesday
4/13/2015

23:59:59 ET

Thursday
4/14/2015

23:59:59 ET

15619 Project
Phase 3

Q4
Development

15619 Project
Phase 3

Code & Report
Due

15619 Project
Phase 3

Live Test

Wednesday
4/13/2015

15:59:59 EDT

WE ARE HERE

Start Early!

15619Project Time Table

28

Phase (and query
due)

Start Deadline Code and Report Due

Phase 1 Part 1
● Q1, Q2

Thursday 02/25/2016
00:00:01 EST

Wednesday 03/16/2016
23:59:59 EDT

Thursday 03/17/2016
23:59:59 EDT

Phase 2
● Q1, Q2, Q3

Thursday 03/17/2016
00:00:01 EDT

Wednesday 03/30/2016
15:59:59 EDT

Phase 2 Live Test
(Hbase/MySQL)

● Q1, Q2, Q3

Wednesday 03/30/2016
18:00:01 EDT

Wednesday 03/30/2016
23:59:59 EDT

Thursday 03/31/2016
23:59:59 EDT

Phase 3
● Q1, Q2, Q3, Q4

Thursday 03/31/2016
00:00:01 EDT

Wednesday 04/13/2016

15:59:59 EDT
(Submit DNS)

Phase 3 Live Test
● Q1, Q2, Q3, Q4

Wednesday 04/13/2016

18:00:01 EDT
Wednesday 04/13/2016
23:59:59 EDT

Thursday 04/13/2016
23:59:59 EDT

● One last query (Q4)
○ No ETL!

○ Serving write requests

○ Front end caching will not work during the live test

○ Two types of requests, set & get

● Live Test!
■ Warmup, Q1, Q2, Q3, Q4, Mixed Q1-Q4

● Each for 30 min

■ Choose HBase or MySQL
● Submit One DNS

Phase 3

Query 4: Tweet Server

There are five different parameters in the request URL for a

request to /q4.

● tweetid (tweet ID)

● op (operation type)

● seq (sequence number)

● fields (comma separated fields involved in the request)

● payload (comma separated payload encoded in Base64)

Execute the requests of a tweetid by the seq (sequence number)

| field | type | example |

|-----------------|------------------------|---|

| tweetid | long int | 15213 |

| userid | long int | 156190000001 |

| username | string | CloudComputing |

| timestamp | string | Mon Feb 15 19:19:57 2016 |

| text | string | Welcome to P4!#CC15619#P3 |

| hashtag | comma separated string | CC15619,P3 |

| ip | string | 128.2.217.13 |

| coordinates | string | -75.14310264,40.05701649 |

| repliedby | comma separated userid | 156190000001,156190000002,156190000003 |

| reply_count | long int | 3 |

| mentioned | comma separated userid | 156190000004,156190000005,156190000006 |

| mentioned_count | long int | 3 |

| favoritedby | comma separated userid | 156190000007,156190000008,156190000009 |

| favorite_count | long int | 3 |

| useragent | string | Mozilla/5.0 (iPhone; CPU iPhone OS ...) |

| filter_level | string | PG-13 |

| lang | string | American |

Query 4: Tweet Server

● SET Request /q4?
tweetid=15213&op=set&seq=1&fields=repliedby,
reply_count&payload=MzM2NDE5MzE2NjUsMTc0Mjg5OTA1O
TksOTQ5MDczNzc5NjQsMzkzMjIxMzU4NjQsMTg0NDA4MDg5NT
UsNTE2MjU1MzMxOTgsOTI4MzA3NTgwNzQ=,Nw==

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

success\n

Query 4: Tweet Server

● GET Request /q4?
tweetid=15213&op=get&seq=2&fields=repliedby,
reply_count&payload=

● Response
TEAMID,TEAM_AWS_ACCOUNT_ID\n

MzM2NDE5MzE2NjUsMTc0Mjg5OTA1OTksOTQ5MDczNzc5NjQsM
zkzMjIxMzU4NjQsMTg0NDA4MDg5NTUsNTE2MjU1MzMxOTgsOT
I4MzA3NTgwNzQ=\n

Nw==\n

Query 4: Tweet Server

Please ensure that you maintain strong consistency for Q4.

● Don’t blindly optimize for every component, identify the bottlenecks
using fine-grained profiling

● Use caches wisely: cache in HBase and MySQL is obviously
important, storing everything in the frontend cache will lead to
failure during the live test

● Review what we have learned in previous project modules
● Scale out
● Load balancing
● Replication and sharding
● Strong consistency (correctness is very important in Q4)

● Look at the feedback of your Phase 1 and Phase 2 reports!

General Hints

● MySQL DBs behind an ELB may require a forwarding

mechanism.

● Consider forwarding the requests but pay attention to

latency.

● Consider batch writes.

● Think about effective distributed caching techniques.

● Don’t block your frontend server.

● The `text` field can be as large as 200 characters. Not

just 140 characters.

Q4 Hints

Phase 3 Live Test

● Phase 3 report is worth 30% of the Phase 3 grade.
● Change DNS between 4:00pm to 6:00pm will result in 10% penalty
● No changes allowed after 6:00pm

Time Value Target Weight

Submit Before 4:00 pm

5:30 pm Validate (Q1 only) - 0%

6:00 pm - 6:30 pm Warm-up (Q1 only) - 0%

6:30 pm - 7:00 pm Q1 27000 5%

7:00 pm - 7:30 pm Q2 10000 15%

7:30 pm - 8:00 pm Q3 6000 15%

8:00 pm - 8:30 pm Q4 10000 15%

8:30 pm - 9:00 pm Mixed Reads(Q1,Q2,Q3,
Q4)

6000/3000/2000/2000 5+5+5+5 = 20%

Phase 3 Live Tips

● Warming up your system will be very important
○ EBS warm up, if launching from an AMI
○ ELB warm up

● Pay attention to malformed requests, your system
should handle exceptions gracefully

● Not all teams do well in Q1 live test, this is the first thing
the you should think of for Phase 3 live test. What is the
reason?

● Do NOT use SPOT instances
● Use ELB, or Elastic IP, etc. So that your system will be

available when some machines have issues

What’s due soon?

● Phase 3 Development
○ Submission by 15:59 ET (Pittsburgh) Wed 04/13

■ Live Test from 6 PM to 9 PM EDT

○ Fix Q1 - Q3 if you did not go well

○ New query Q4

○ Phase 3 counts for 60% of the 15619Project grade

● Phase 3 Report
○ Submission 23:59:59 ET (Pittsburgh) Thur 04/14

○ Explain in detail the strategies you used

○ Difficulties you encountered even if you didn’t get

a good score

