15-319 / 15-619
Cloud Computing

Overview 5
March 2" 2021

Reflection of Last Week

e Conceptual content on OLI
o Modules 5, 6 and Quiz 3
e Project theme - Horizontal Scaling and Advanced Resource
Scaling
o AWS Horizontal Scaling
m Launch cloud resources via the AWS APIs (EC2)
m Horizontally scale instances to reach a target RPS
o AWS Autoscaling
m Launch cloud resources via the AWS APIs (ALB / ASG...)
m Design autoscaling policies to achieve RPS targets within
instance hour limits
m Handle instance failures
o AWS Autoscaling with Terraform
m Develop a Terraform template to launch cloud resources
m Contrast infrastructure as code (laC) and cloud APls

This Week

e Code Review - Project 1.2
o Due on Wednesday, March 3rd, 2021, 11:59PM ET
e Quiz 4 (OLI Modules 7, 8 & 9)
o Due on Friday, March 5, 2021, 11:59PM ET
e Project 2.2
o Due on Sunday, March 7, 2021, 11:59PM ET
e Primers released this week
o HBase Basics
Introduction to Apache Spark
Introduction to Scala
MongoDB Primer
MySQL Primer
NoSQL Primer
Profiling a Cloud Service
Storage I/O benchmarking
Zeppelin for Apache Spark

O O O O O O O O

This Week: Conceptual Content

e OLI, UNIT 3: Cloud Infrastructure

o Module 7: Introduction and Motivation
o Module 8: Virtualization
o Module 9: Resource Virtualization - CPU

OLI Module 7 - Virtualization
Introduction and Motivation

e \Why virtualization?
o Elasticity

o Resource sandboxing

o Mixed OS environment
o Resource sharing

o Improved system utilization and reduced costs

OLI Module 8 - Virtualization

e What is Virtualization?
o Involves the construction of an isomorphism that
maps a virtual guest system to a real (or physical)
host system
o Sequence of operations e modify guest state
o Mapping function V(Si)

|
Guest

e Virtual Machine Types v(s)

o Process Virtual Machines

o System Virtual Machines

OLI Module 9
Resource Virtualization - CPU

Steps for CPU Virtualization

o Multiplexing a physical CPU among virtual CPUs
o Virtualizing the ISA (Instruction Set Architecture) of a CPU

Code Patch, Full Virtualization and Paravirtualization
Emulation (Interpretation & Binary Translation)
Virtual CPU

o P2.2:

O O O

This Week’s Project

[e]|[{e]e]][e]]]][e
IO1NIOIOINIOI
[o]|[[e]el][e]]]][e

IOI1NOIIOINIOI

Docker Containers and Kubernetes

Building your own container-based microservices
Docker containers

Manage multiple Kubernetes Cluster

Multi Cloud deployments

Containers

® Provides OS-level virtualization.

® Provides private namespace, network
interface and IP address, etc.
e A big difference with VMs is t

share the host system’s

nat containers
Kerne

Containerized Applications

Virtual Machine

Virtual Machine | | Virtual Machine
ues ues ues
Operating

App A
App B
App C
App E
App F

Operating Operating
System System System
Host Operating System

Why Containers?

Faster deployment
Portable

Modularity

Consistent Environment

Build once, run anywhere

10

Docker

&

docker

Docker is an open platform for developing,
shipping, and running applications.

Dockerfile
Docker Image
Docker Container

Dockerfile

e

build

Single Container Docker Workflow

Image

&

Docker Image Docker Container

11

O

il

il
(I (I [,

Dockerfile =
docker
e Dockerfile tells Docker how to build an image:
Base Image
Commands
Files
Ports

O O O O

Startup Command

® In short, a Dockerfile is a recipe for Docker images

Let’s go through a sample Dockerfile!

12

Example Dockerfile

Debian as the base image
FROM debian:latest

references
parent
image
Install additional packages
RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory
ADD index.html /home/demo/

Define the command which runs when the container starts
CMD ["cat /home/demo/index.html"]

Us$ bash as the container's entry point. CMD is the argument to this entry
poin

ENTRYPOINT ["/bin/bash", "-c"]

13

Example Dockerfile

Debian Linux as the base image
FROM debian:latest

S

14

Example Dockerfile

Install additional packages
RUN apk add --update emacs
RUN apk add --update apache

15

Example Dockerfile

references
parent
image

index.html must be in the current directory
ADD index.html /home/demo/

16

Example Dockerfile

references
parent
image

Define the command which runs when the container starts
CMD ["cat /home/demo/index.html"]

Usg bash as the container's entry point. CMD is the argument to this entry
poin

ENTRYPOINT ["/bin/bash", "-c"]

17

Images & Containers

® docker build
o Builds an image

® docker run
o Runs a container based on an image

® Images are the blueprints (Like a Class)
o View these with docker images

e Containers are a ‘running instance of an Image’

(Like an Object)
o View these with docker ps

Docker Engine

® A client-server application
Ker Daemon

O
O
O

DOC
DOC

<er CLI

REST

API

container

network

manages

I

manages

Client
docker CLI

REST API

server

Y

docker

image

manages —J

docker daemon

data volumes

19

il

i ()
reararwy
(¢}

NN

docker

Docker Daemon

e Listens for Docker APl requests

e Manages Docker objects

e The Daemon does not have to be on the same
machine as the Client

Docker Host

Docker Client

Images Containers
docker build [::> nede R
docker run @ @
docker pull & Ubuntu
docker push
[Daemon
|
Dockerfile

&

20

il

il
(I (I [’

O

N
docker
e Communicates with Daemon using an API
e When you type:
docker build nginx
You are telling the Docker client to forward the
puild nginx instruction to the Daemon

Docker CLI

Docker Host

Docker Client Images Containers

docker build || " de Tl
H)

docker run (hY)
docker pull 2 A‘ ub?r?tu
docker push

[Daemon

i

Dockerfile

2121

Docker Registries

» Store Docker images

« Examples
— Docker Hub and Docker Cloud
— GCP Container Registry
— Azure Container Registry

* docker pull

* docker push

New to Docker?
Create your free Docker ID to get started.

Docker Hub

Dev-test pipeline automation, 100,000+ free apps, public and private registries

Containers are userful, but how
to manage containers?

Containers provide many benefits
o Fast and lightweight
o Sandboxed and consistent

However, using containers introduces its

own complexity, e.g.,
o Load Balancing
o Fault Tolerance

How should we deploy, scale and manage
containers efficiently?

Kubernetes

e Kubernetes is an open-source platform for automating

deployment, scaling, and operations of application

containers.

O

O O O O

Horizontally Scalable
Self-Healing

Service Discovery
Automated Rollbacks

Utilization

kubernetes

24

https://kubernetes.io/docs/whatisk8s/

Kubernetes Overview %

e API Objects

o Pods - Collection of Containers
o Deployment - Manages Pods
o Service - Network Endpoint

e Desired State Management
o YAML (YAML Ain’t a Markdown Language)

e Kubect| - CLI for Kubernetes
o kubectl create config.yaml

25

https://kubernetes.io/docs/user-guide/kubectl-overview/

Kubernetes Cluster - Master

e Master Node
o API Server
o Controller Manager
o Scheduler

Kubernetes Node Kubernetes Node

Kubernetes Cluster - Worker

e Worker Nodes
O Kubelet Daemon
o Kube-Proxy

Kubernetes Node Kubernetes Node
27

Sample Kubernetes Config YAML %

apiVersion: apps/vlbetal
kind: Pod
metadata:
name: Sample-Pod
labels:
app: web
spec:
containers:

- name: front-end >
image:

gcr.io/samples/hello-frontend:1.0
ports:
- containerPort: 80
- name: hello-app
image:
gcr.io/samples/hello-app:1.0
ports:
- containerPort: 8080

Sample-Pod

front-end

hello-app

28

Y
Helm HELM

—

e A tool for managing Kubernetes applications
e Helm Charts help you define, install, and upgrade
complex Kubernetes application

e Chart structure:
o Chart.yaml
m A YAML file that contains chart information (name, version, description, etc.)
o Values.yaml

m The default configuration of this chart. The values listed in this file will be
substituted in the files under the templates/ directory.

o templates/

m Adirectory of template files that will be combined with the values defined in
Values.yaml. The files under this directory will be used to define all of the
Kubernetes objects required to deploy the application.

29

Docker, Kubernetes Workflow

CLOUD

CONTAINER
REGISTRY

LOG ANALYSIS

adl

MONITORING

CONTAINER

IMAGE

DEV

@ E docker < ‘

SCAFFOLD
APPLICATION

Microservice Architecture

e |oosely coupled applications, that generally communicate
over a network and exist independently of each other.
e \Why adopt a Microservice architecture?
o Application Size
o Scalability
o Modifiability

o Fault-tolerance

An Industrial Example

USER

USER (3)

CLOUD

KUBERNETES

-,

Ca

++

g

ffe?2

PYTHRCH

Caffe Keras

REST
API

TRAINER
—> SERVICE =

LIFECYCLE
MANAGER

4@7

TRAINING
JOB

)

LEARNER
POD

LEARNER

(e.g. Tensorflow, Caffe,
PyTorch, Keras etc)

CONTROLLER

EXTERNAL

©)-o0

BROWSER

WEB

©

: :

HELM

O

MONGO

DB

PROMETHEUS

TRAINING
DATA SERVICE

o

EtcD

LOG
COLLECTOR
JOB
MONITOR
PARAMETER
SERVER

CLOUD HARDWARE (GPUs and CPUs

SSD BACKED NFS VOLUMES

\

ATV

OBJECT
STORAGE

MODEL
DIFINITION
TRAINING
DATA

TRAINED
MODELS

J

32

Project 2.2 - Containers & Kubernetes

$ & W

Profile Login Chat

Project 2.2 - Containers & Kubernetes

Architecture: WeCloud Chat Microservices - Auto Scaling and Multi-Cloud

) Google Cloud Platform gsg”ereg Engine /AAzure &‘;g”eﬁ Service
Profile Service Profile Service
Q) poiie = —@ < —> Q) poie = ‘a
J MysaL W - MysaL
Iprofile Iprofile
f
|

Chat Service E

@ MySQL
@ Chat HPA

Ingress Ingress
Redis Pub/Sub ‘
Login Service Login Service —————> HTTP Requests
Nlogin Nlogin
[| Y QL Connections
@ Login HPA —ﬁ Login e
- MysaL ™ MysQL ————o Redis Pub/Sub

34

Project 2.2 - Containers & Kubernetes

e Build a chat room application using the microservice
pattern
® Project overview:

o Task 1: Containerize the profile service and run it locally
o Task 2: Deploy the profile service to GKE

o Task 3: Migrate the profile service’s database from H2 to
MySQL. Use Helm to manage the Kubernetes application.

o Task 4: Install the chat service and login service using Helm
charts. Connect the microservices to build an application.

o Task 5: Replicate the profile and login services to AKS.
Implement autoscaling rules to horizontally scale pods.

o Task 6: DNS using Azure front door service

Task 1 - Containerize Profile
Service

® Introduction to Dockerfiles

® Become familiar with the Docker CLI
O docker build
0 docker 1mages
O docker run
O docker ps

e Containerizing Java applications (a REST
service)

e Consider the interactions between the host
machine and the container
O See the next slide

Task 1 - Containerize Profile
Service

e Run a Docker container to host the profile service

o The Profile service exposes port 8080 on the container
o Port 8000 of VM is mapped to the container port

e How do we achieve this port mapping?

£<e02.***.amazonaws.com:8000> } {<profile-service:8080> }

Task 2 - Using GCR and GKE to
Deploy the Profile Service

e Push your image to a private registry

O Push the profile service Docker image to Google
Container Registry (GCR)

e Define a Kubernetes YAML configuration to

o Create a deployment based on the image pushed
to GCR
o Expose the profile service via a (GCP) load balancer

Task 2 - Using GCR and GKE to
Deploy the Profile Service

e Profile service Architecture: Profile Service on GKE

architecture

e The backend) Google Cloud Platform &) e Eee
application accepts
GET requests at

/profile @ Profile @

Profile Service

H2 DB
e The load balancer L -Od _T cp:80 — tcp:8080
will map port 80 to
port 8080 Load Balancer

GET /profile

39

Task 3 - Introduction to Helm Charts

e Deploy a MySQL database using Helm

o Update the profile service to use MySQL instead of
the embedded H2 database
o Remember to push your updated image to GCR!

e Develop a Helm chart for the profile service
o Release the profile service via helm

Task 3 - Use Helm Charts and Migrate
to MySQL

Profile service

architecture
(MySQL)

) Google Cloud Platform

The backend

Profile Service

Kubernete
(GKE)

—

MySQL

..Os. _I tcp:80 — tcp:8080

application _
accepts GET O Profie
requests at 0 =
/profile

The load

Load Balancer

s Engine

balancer should
map 80 to 8080

GET /profile

41

Task 4 - Cloud Chat Microservices

e Builds on Task 3
o Additional login and group chat services

e Login service
o Requires a separate MySQL database to store user
login information

e Group chat service
o Redis Pub/Sub messaging channel for scalability
and real time communication
o A separate MySQL database to persist messages

Task 4 - Cloud Chat Microservices

Architecture: WeCloud Chat Microservices

) Google Cloud Platform @ Kubernetes Engine

(GKE)

Profile Service

@ Profile —@ 5

MySQL
Iprofile
Chat Service @
O o = W
: i Ingress
Redis Pub/Sub
Login Service
llogin
|
@ Login /—ﬁ P
MySQL

—_—

HTTP Requests

— @ MySQL Connections

— 0o

Redis Pub/Sub

43

Task 4 - Cloud Chat Microservices

* Ingress: An APl object that manages external access
to the services in a cluster, typically HTTP.

* Ingress exposes HTTP and HTTPS routes from
outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the
Ingress resource.

* |n our case for Task 4, we have the following port
mapping:

path serviceName servicePort
/ spring-redis-websocket-service 80
/login spring-login-service 80

/profile spring-profile-service 80

Task 4 - Cloud Chat Microservices

* You must have an ingress controller to satisfy an Ingress.
Only creating an Ingress resource has no effect. An Ingress
controller is responsible for fulfilling the Ingress, usually
with a load balancer. You may need to deploy an Ingress
controller such as ingress-nginx.

r
| kubernetes

: Service 1 Service 2
: = ,'rz—n
' =3 =3

. m : Serwces Service 4
Ingress

Controller '

l App

—————————————————————— 45

L U U S U I I S MU ———— 4

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.github.io/ingress-nginx/deploy/

Task 5 - Autoscaling, Multiple Cloud
Deployment and Fault Tolerance

e Build upon Task 4

o Consider how to handle downstream service failures

e Achieve high availability

o Multi cloud deployments!

o Autoscaling Kubernetes deployments to
accommodated increased traffic

o Use the HorizontalPodAutoscaler Kubernetes
object to scale the pods

Task 5 - Auto-scaling, Multiple Cloud
Deployment and Fault-tolerance

Architecture: WeCloud Chat Microservices - Auto Scaling and Multi-Cloud

) Google Cloud Platform

Profile Service

@ Profile

Chat Service

@ Chat

HPA

Login Service

@ Login

<

._EH

HPA

MySQL

2=

MySQL

@ Login

Profile Service
ﬂ e @ Profile
MysQL
Iprofile Iprofile
2
|
MySQL
i Ingress Ingress
Redis Pub/Sub ’
Login Service
flogin Nlogin

°—u

MysQL

>

—_ o

HTTP Requests

MySQL Connections

Redis Pub/Sub

47

Task 6 - Domain Name and Azure
Front Door Service

e In this task, you will use Azure Front Door Service to
achieve a path-based routing to the web application
deployed on Azure and GCP.

e We will define Domain Name System (DNS) to map
two IP address from previous tasks, to a single
domain name.

48

Tips, Trips, and Tricks

e Debug, debug, debug
o This project has many moving pieces!
o Where is the issue occurring?
o What is the expected behavior of the system?

e Pods and Logs

o Did my pod start?
m (kubectl get pods , kubectl describe pods)

o Is my pod generating any logs?
m (kubectl logs ..)

Project 2.2 Penalties

Project Grading Penalties

The following table outlines the violations of the project rules and their corresponding grade penalties for this project.

Note that a penalty is the absolute value as per the table, not calculated by a percentage of your total score.

Violation Penalty of the project
grade

Incomplete submission of required files -10%

Submitting your credentials, other secrets, or Andrew Id in your code for grading -100%

Submitting only executables (. jar, .pyc, etc.) without human-readable code (.py, .java, .sh, -100%

etc.)

Attempting to hack/tamper the grader -100%

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on academic -200% or R in the

integrity and our syllabus) course

50

Upcoming Deadlines .

e Code Review - Project 1.2
o Due on Wednesday, March 3rd, 2021, 11:59PM ET

e Quiz 4 (OLI Modules 7, 8 & 9)
o Due on Friday, March 5th, 2021, 11:59PM ET

e Project 2.2
o Due on Sunday, March 7th, 2021, 11:59PM ET

51

