
15-319 / 15-619
Cloud Computing

Course Overview 4

February 8th, 2022

Reflection of Last Week
● Conceptual content on OLI

○ Modules 3, 4 and Quiz 2
● Project theme - Horizontal Scaling and Advanced Resource

Scaling
○ AWS Horizontal Scaling

■ Launch cloud resources via the AWS APIs (EC2)
■ Horizontally scale instances to reach a target RPS

○ AWS Autoscaling
■ Launch cloud resources via the AWS APIs (ALB / ASG…)
■ Design autoscaling policies to achieve RPS targets within

instance hour limits
■ Handle instance failures

○ AWS Autoscaling with Terraform
■ Develop a Terraform template to launch cloud resources
■ Contrast infrastructure as code (IaC) and cloud APIs

2

This Week
● Quiz 3 (OLI Modules 5, 6)

○ Due on Friday, February 11th, 2022, 11:59PM ET
● Project 1 Discussion

○ Due on Sunday, February 13th, 2022, 11:59PM ET
● Project 2

○ Due on next Sunday, February 20th, 2022, 11:59PM ET
● Primers released this week

○ HBase Basics
○ MongoDB Primer
○ MySQL Primer
○ NoSQL Primer
○ Profiling a Cloud Service
○ Storage I/O benchmarking
○ Introduction to Apache Spark
○ Introduction to Scala
○ Zeppelin for Apache Spark
○ Online Programming Exercises
○ Introduction to consistency models[Optional]
○ Introduction to multithreaded programming in Java[Optional]

3

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning, monitoring
and metering of virtual user “resources” on top of the
Cloud Service Provider’s (CSP) infrastructure.

● Cloud middleware
● Provisioning
● Metering
● Orchestration and automation
● Case Study: Openstack - Open-source cloud stack

implementation

● Programming on the cloud

● Deploying applications on the cloud

○ Build fault-tolerant cloud services

○ Load balancing

○ Scaling resources

○ Dealing with tail latency

○ Economics for cloud applications

OLI Module 6 - Cloud Software
Deployment Considerations

● Cloud is about where we’re computing.

● Cloud-native is about how we’re computing.

Cloud Native

Cloud-native technologies are

used to describe applications

built with services packaged in

containers, deployed as

microservices and managed on

elastic infrastructure through

agile DevOps processes and

continuous delivery workflows.

Cloud & Cloud Native

● software is more stable than the infrastructure it runs on.

● software is designed to anticipate failure.

● software remains stable even when the infrastructure it is.

running on experiences outages or changes.

● software is scalable by design.

● software must operate in a constantly changing environment.

Cloud Native

● New platforms emerged, offering common services

(features) that make it easier to develop cloud-native

applications

○ Auto-scaling, replication, load balancing, health

monitoring, service discovery, application-level routing,

programmability

○ Commonly referred as “Platform as a Service” (PaaS)

Cloud–Native Applications: Platforms

Google App Engine
Kubernetes

Project 2
Containers: Docker and

Kubernetes

• Docker containers
• Building your own container-based

microservices
• Manage multiple Kubernetes Cluster
• Multi-Cloud deployments

10

Containers

● Provides OS-level virtualization.
● Provides private namespace, network

interface and IP address, etc.
● A big difference with VMs is that containers

share the host system’s kernel

11

Why Containers?

● Faster deployment
● Portable
● Modularity
● Consistent Environment

Build once, run anywhere

12

● Docker is an open platform for developing,
shipping, and running applications.

● Dockerfile
● Docker Image
● Docker Container

Docker

13

Dockerfile

● Dockerfile tells Docker how to build an image:
○ Base Image
○ Commands
○ Files
○ Ports
○ Startup Command

● In short, a Dockerfile is a recipe for Docker images

Let’s go through a sample Dockerfile!

14

Example Dockerfile
Debian as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

15

Example Dockerfile
Debian Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

16

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

17

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

18

Example Dockerfile
Alpine Linux as the base image

FROM debian:latest

Install additional packages

RUN apk add --update emacs

RUN apk add --update apache

index.html must be in the current directory

ADD index.html /home/demo/

Define the command which runs when the container starts

CMD ["cat /home/demo/index.html"]

Use bash as the container's entry point. CMD is the argument to this entry
point

ENTRYPOINT ["/bin/bash", "-c"]

19

● docker build
○ Builds an image

● docker run
○ Runs a container based on an image

● Images are the blueprints (Like a Class)
○ View these with docker images

● Container is a ‘running instance of an Image’ (Like
an Object)
○ View these with docker ps

● Docker cheat sheet

Images & Containers

20

https://www.docker.com/sites/default/files/d8/2019-09/docker-cheat-sheet.pdf

Docker Engine

● A client-server application
○ Docker Daemon
○ Docker CLI
○ REST API

2121

Docker Daemon

● Listens for Docker API requests
● Manages Docker objects
● The Daemon does not have to be on the same

machine as the Client

22

Docker CLI

● Communicates with Daemon using an API
● When you type:

docker build nginx

You are telling the Docker client to forward the
build nginx instruction to the Daemon

2323

Docker Registries

• Store Docker images
• Examples

– Docker Hub and Docker Cloud
– GCP Container Registry
– Azure Container Registry

• docker pull

• docker push

24

Containers are userful, but how
to manage containers?

● Containers provide many benefits
○ Fast and lightweight
○ Sandboxed and consistency

● However, using containers introduces its
own complexity, e.g.,
○ Load Balancing
○ Fault Tolerance

● How should we deploy, scale and manage
containers efficiently?

25

Kubernetes

● Kubernetes is an open-source platform for automating

deployment, scaling, and operations of application

containers.

○ Horizontally Scalable

○ Self-Healing

○ Service Discovery

○ Automated Rollbacks

○ Utilization

26

https://kubernetes.io/docs/whatisk8s/

Kubernetes Overview

● API Objects
○ Pods - Collection of Containers
○ Deployment - Manages Pods
○ Service - Network Endpoint

● Desired State Management
○ YAML (YAML Ain’t a Markdown Language)

● Kubectl - CLI for Kubernetes
○ kubectl create config.yaml

27

https://kubernetes.io/docs/user-guide/kubectl-overview/

Kubernetes Cluster - Master

● Master Node
○ API Server
○ Controller Manager
○ Scheduler

28

Kubernetes Cluster - Worker

● Worker Nodes
○ Kubelet Daemon
○ Kube-Proxy

29

apiVersion: v1
kind: Pod
metadata:
 name: Sample-Pod
 labels:
 app: web
spec:
 containers:
 – name: front-end
 image:
gcr.io/samples/hello-frontend:1.0
 ports:
 – containerPort: 80
 – name: hello-app
 image:
gcr.io/samples/hello-app:1.0
 ports:
 – containerPort: 8080

Sample Kubernetes Config YAML

30

*Take note of indentation

● A tool for managing Kubernetes applications
● Helm Charts help you define, install, and upgrade

complex Kubernetes application
● Chart structure:

○ Chart.yaml
■ A YAML file that contains chart information (name, version, description, etc.)

○ Values.yaml
■ The default configuration of this chart. The values listed in this file will be

substituted in the files under the templates/ directory.
○ templates/

■ A directory of template files that will be combined with the values defined in
Values.yaml. The files under this directory will be used to define all of the
Kubernetes objects required to deploy the application.

Helm

31

https://helm.sh/

Docker, Kubernetes Workflow

32

Microservice Architecture (MSA)

33

● An architectural development style of software systems to

structure a single application as a collection of loosely

coupled services.

● This architecture allows each service to exist independently

of each other and generally communicates over a network.

● The most common type of communication is by invoking a

regular web API service. It can also adopt messaging

protocols for asynchronous communication.

https://microservices.io/

Microservice Architecture (MSA)

34

● Each microservice has:

○ own CPU

○ own runtime environment

○ often, a team working on it

● Each service can:

○ run its own unique process

○ communicate autonomously

https://microservices.io/

Microservice Architecture (MSA)

35

● Why adopt a Microservice architecture?

○ Application Size

○ Scalability

○ Modifiability

○ Highly Maintainable

○ Fault-tolerance

https://microservices.io/

An Industrial Example

36

37

Project 2 - Containers: Docker & Kubernetes

WeCloud Chat

38

Project 2 - Containers: Docker & Kubernetes

Project 2 - Containers & Kubernetes
● Build a chat room application using the microservice

pattern
● Project overview:

○ Task 1: Containerize the profile service and run it locally

○ Task 2: Deploy the profile service to GKE

○ Task 3: Migrate the profile service database from H2 to
MySQL. Use Helm to manage the Kubernetes application.

○ Task 4: Install the chat service and login service using Helm
charts. Connect the microservices to build an application.

○ Task 5: Replicate the profile and login services to AKS.
Implement auto scaling rules to horizontally scale pods.

○ Task 6: DNS using Azure front door service
39

Task 1 - Containerize Profile Service

● Introduction to Dockerfiles
● Become familiarize with the Docker CLI

○ docker build
○ docker images
○ docker run
○ docker ps

● Containerize a Java application (a REST service)
● Consider the interactions between the host

machine and the container
○ See the next slide

40

Task 1 - Containerize Profile Service

● Run a Docker container to host the profile service
○ The Profile service exposes port 8080 on the container

○ Port 8000 of VM is mapped to the container port

● How do we achieve this port mapping?

<GCP_IP:8000> <profile-service:8080>

41

Task 2 - Using GCR and GKE to
Deploy the Profile Service

● Push your image to a private registry
○ Push the profile service Docker image to Google

Container Registry (GCR)

● Define a Kubernetes YAML configuration to
○ Create a deployment based on the image pushed

to GCR
○ Expose the profile service via a (GCP) load balancer

42

Task 2 - Using GCR and GKE to
Deploy the Profile Service

● Profile service
architecture

● The backend
application
accepts GET
requests at
/profile

● The load
balancer will map
port 80 to port
8080

43

Task 3 - Introduction to Helm Charts

● Deploy a MySQL database using Helm
○ Update the profile service to use MySQL instead of

the embedded H2 database
○ Remember to push your updated profile image to

GCR!

● Develop a Helm chart for the profile service
○ Release the profile service via helm

44

Task 3 - Use Helm Charts and Migrate
to MySQL

45

● Profile service
architecture
(MySQL)

● The backend
application
accepts GET
requests at
/profile

● The load
balancer
should map 80
to 8080

Task 4 - Cloud Chat Microservices

● Builds on Task 3
○ Additional login and group chat services

● Login service
○ Requires a separate MySQL database to store user

login information

● Group chat service
○ Requires Redis Pub/Sub messaging channel for

scalability and real time communication
○ Requires a separate MySQL database to persist

messages
46

Task 4 - Cloud Chat Microservices

47

Task 4 - Cloud Chat Microservices
• Ingress: An API object that manages external access

to the services in a cluster, typically HTTP.
• Ingress exposes HTTP and HTTPS routes from

outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on the
Ingress resource.

• In our case for Task 4, we have the following port
mapping:

48

Task 4 - Cloud Chat Microservices
• You must have an ingress controller to satisfy an Ingress.

Only creating an Ingress resource has no effect. An Ingress
controller is responsible for fulfilling the Ingress, usually
with a load balancer. You may need to deploy an Ingress
controller such as ingress-nginx.

49

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.github.io/ingress-nginx/deploy/

Task 5 - Autoscaling, Multiple Cloud
Deployment and Fault Tolerance

● Build upon Task 4
○ Consider how to handle downstream service failures

● Achieve high availability
○ Multi cloud deployments!
○ Autoscaling Kubernetes deployments to

accommodated increased traffic
○ Use the HorizontalPodAutoscaler Kubernetes

object to scale the pods

50

Task 5 - Auto-scaling, Multiple Cloud
Deployment and Fault-tolerance

51

Task 6 - Domain Name and Azure
Front Door Service

● In this task, you will use Azure Front Door Service to
achieve a path-based routing to the web application
deployed on Azure and GCP.

● We will define Domain Name System (DNS) to map
two IP address from previous tasks, to a single
domain name.

52

Tips, Trips, and Tricks

● Look through all the project 2 primers again
● Read the project explanations again
● Debug, debug, debug

○ This project has many moving pieces!
○ Where is the issue occurring?
○ What is the expected behavior of the system?

● Pods and Logs
○ Did my pod start?

■ (kubectl get pods , kubectl describe pods)

○ Is my pod generating any logs?
■ (kubectl logs …) 53

Project 2 Penalties

54

Upcoming Deadlines

● Quiz 3 (OLI Modules 5, 6)
○ Due on Friday, February 11th, 2022, 11:59PM ET

● Project 1 Discussion
○ Due on Sunday, February 13th, 2022, 11:59PM ET

● Project 2
○ Due on next Sunday, February 20th, 2022, 11:59PM ET

55

Please start early!!!

Manage your time well

56

