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Reflection of Week Before Spring Break

Conceptual content on OLI
o Module 13: Storage and Network Virtualization

Project 3: Cloud Storage
Team Project Checkpoint
OPE - Spark Programming



This Week

e OLI, Unit 4: Cloud Storage
O Module 14: Cloud Storage

® Quiz 7 (OLI Module 14)

o Due Friday, March 18th, 2022, 11:59PM ET
e Project 4 - Iterative processing with spark

© Due Sunday, March 27th, 2022, 11:59PM ET




Introduction to MapReduce

The MapReduce programming model simplifies parallel
processing by abstracting away the complexities
involved in working with distributed systems

Map: Process the input data in chunks in parallel

Shuffle and sort
Reduce: Aggregate or summarize intermediate data in

parallel and output the result

Input data
Output data




Typical MapReduce Batch Job

e Simplistic view of a MapReduce job

Input

[ HDFS }——* Mapper

Reducer

Output

(o)

e You write code to implement the following classes

— Mapper
— Reducer

e |Inputs are read from disk and outputs are written to disk

— Intermediate data is spilled to local disk



Iterative MapReduce Jobs

e Some applications require iterative processing

e E.g., Machine Learning

Input

->[ HDFS }——* Mapper

Reducer

Prepare data for the next iteration

Output

e

e MapReduce: Data is always written to disk

— This leads to added overhead for each iteration

— Can we keep data in memory? Across lterations?

— How do you manage this?



Apache Spark

e General-purpose cluster computing framework
e APIsin Python, Java, Scala and R
Runs on Windows and UNIX-like systems

RDD Objects

rddl.join (rdd2)
.groupByYy (...)
.filter(..)
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Apache Spark APls

® There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed
Dataset (RDD)

a h

e Distributed
collection of
JVM objects

e Functional

(map, filter, etc.)

operators
- /

DataFrame

e

~

Distributed
collection of
Row objects
No compile time
type safety
Fast, efficient
internal

Datasets

-

e Compile time
type-safe
e F[ast

representations/

\_

~

4
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Key to Apache Spark - RDDs

Resilient Distributed Datasets (RDDs)

Can be in-memory or on disk

Read-only objects

Partitioned across the cluster based on a range or the
hash of a key in each record

' I
Machine A t RDD1 RDD?’

|| RDD Operation

Machine B L

RDD2 (e.g. map, filter) L RDD2’

Machine C t | L
RDD3 RDD3’




Operations on RDDs

e Loading data
>>> input RDD = sc.textFile("text.file")

e Transformation
— Applies an operation to derive a new RDD

— Lazily evaluated -- may not be executed immediately
>>> transform RDD = input RDD.filter(lambda x: "abcd" in x)

e Action
— Forces the computation on an RDD

— Returns a single object
>>> print "Number of “abcd”:" + transform RDD.count()

e Saving data
>>> output.saveAsTextFile(“hdfs:///output”) 0



RDDs and Fault Tolerance

® Actions create new RDDs
e Uses the notion of lineage to support fault tolerance
o Lineage is a log of transformations
o Stores lineage on the driver node
o Upon node failure, Spark loads data from disk to
recompute the entire sequence of operations based
on lineage

11



DataFrames and Datasets

e A DataFrame is a collection of rows
o Tabular
o Organized into named columns, like a table in a relational
DB
® A dataset is a collection of objects
o Domain specific

o Object oriented
Unified Apache Spark 2.0 API

Untyped API

« DataFrame = Dataset[Row]
« Alias
Dataset
(2016)

Typed API

« Dataset[T]
12

€databricks



Operations on DataFrames

e Suppose we have a file people.json

{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

e Create a DataFrame with its contents

val df = spark.read.json("people.json")

e Run SQL-like queries against the data

val sqlDF = df.where($"age" > 20).show()

+---t----4
|age |name |
+o--t----+
| 30|Andy|

+---4----+

e Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output”)

Note: Parquet is a column-based storage format for Hadoop.

13



Spark Ecosystem

Spark SQL
O Process structured data

o Run SQL-like queries against RDDs
Spark Streaming

o Ingest data from sources like Kafka
o Process data with high level functions like map and reduce

o Output data to live dashboards or databases
MLlib

o Machine learning algorithms such as regression

o Utilities such as linear algebra and statistics
GraphX

o Graph-parallel framework
o Support for graph algorithms and analysis

14


https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Project 4
Iterative Processing with Spark

Task 1: Exploratory Analysis on a graph based dataset

Task 2: Create an efficient Spark program to calculate
user influence

Bonus: Use Azure Databricks to run Task 2

15



Twitter Social Graph Dataset

e tsvformat
® Appx. 10GB of data (do not download)
e Edge list of (follower, followee) pairs
o Directed
e # of followers distribution — power tail
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Task 1 Exploratory Data Analysis

Two parts to Task 1

e Counting using Zeppelin notebook
o Find the number of edges
o Find the number of vertices

® Find top 100 most-popular users
o RDD API
o Spark DataFrame API

17



Task 2: PageRank

e Started as an algorithm to rank websites in search engine
results

® Assign ranks based on the number of links pointing to
them

® A page that has links from
o Many nodes = high rank
o A high-ranking node = (slightly less) high rank

e Implement Pagerank to find the rank of each user

18



Basic PageRank

e How do we measure influence?
o Intuitively, it should be the node with the most
followers

L 1//2

19



Basic PageRank

e Influence scores are initialized to -
1.0 / # of vertices

N

0.333

0.333

20



Basic PageRank

® [n each iteration of the algorithm, scores of each user are
redistributed between the users they are following

0.333 0.333

0/—\2



Basic PageRank

® [n each iteration of the algorithm, scores of each user are
redistributed between the users they are following

From Node 0 From Node 1

0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 22



Basic PageRank

e Convergence is achieved when the scores of nodes do
not change between iterations

e PageRank is guaranteed to converge

From Node O From Node 1
0.333/2 0.333 + 0.333/2
=0.167 = 0.500

From Node 1

0.333

From Node 2 23



Basic PageRank

e Convergence is achieved when the scores of nodes do
not change between iterations
e PageRank is guaranteed to converge

0.208 0.396

L 1//2

0.396

24



PageRank Terminology

e Dangling or sink vertex

o No outgoing edges

o Redistribute contribution equally among all vertices
e [solated vertex

o No incoming and outgoing edges

o No isolated nodes in Project 4 dataset

/ﬁ\

\f/

<— Isolated vertex
Dangllng vertex ’

25



PageRank Terminology

e Damping factor d
O Represents the probability that a user clicking on links
will continue clicking on them, traveling down an edge
o Used=0.85



Visualizing Transitions

® Adjacency matrix:
0 0 0 0

G =

o O
o=
i
o O O

® Transition matrix: (rows sum to 1)
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Task 2: PageRank

Formula for calculating rank
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Task 2: PageRank

@ Formula for calculating rank
kH) =d Z fr d)fr,fo)

Vj EN vZ

d=0.85

@ Note: contributions from isolated and

dangling vertices are constant in an
iteration

Let

29



Task 2: PageRank

@ Formula for calculating rank

kH) =d Z fr d)fr,fo)
’UJEN vZ
d=0.85

@ Note: contributions from isolated and

dangling vertices are constant in an

. - iteration
This simplifies the formula
(0
r(()l)—d——l—e+(1—d)% Let
(0
ri = dz— +e+(1-— d)% T(()O) réo)
(0) 1 €= d( 4 —'_ 4 )
TQ —d_+€+(1—d>ﬁ
T§1)=6+(1—d)% 30
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Task 2: PageRank

Formula for calculating rank

kH)—d Z ’r

’UJEN
d=0.85

&

e = 0.85 x (0.25/4 + 0.25/4) = 0.106

ri) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
rit = 0.85 x 0.25 + 0.106 + 0.15 x 0.25 = 0.356
(1) = 0.85 x 0.25/2 + 0.106 + 0.15 x 0.25 = 0.25
ri =0.106 + 0.15 x 0.25 = 0.144

—d)r

31
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Task 2: PageRank

Formula for caIcuIating rank
k—l—l) _ 4 Z T _d)r (0)

v; EN (v;
@ d=0.85

ri = 0.2656
ri¥) = 0.3487
r{¥) = 0.2656
r =0.1199
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Basic PageRank Pseudocode

(Note: This does not meet the requirements of Task 2)

val links = spark.textFile(...).map(...) .cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks) .flatMap
{
case (url, (links, rank)) =>

links.map (dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey( + )

.mapValues (sum => a/N + (1-a)*sum)

}

Reference: https://qithub.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 33



https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

What you need to do for Task 2

® Run your page rank application on a 10GB graph data for
10 iterations.
e Using HDInsight cluster on Azure:

o Use the Terraform template provided for

provisioning the cluster
o Very expensive - 2.6USD per hour

® Scoring for Task 2 has 2 components:
o 100% correctness for page rank - 30 points
o Performance optimization (runtime within 30

minutes) - 30 points

34



Pagerank Hints

® Ensuring correctness
o Make sure total scores sum to 1.0 in every iteration
o Understand closures in Spark

m Do not do something like this
val data = Array(1,2,3,4,5)
var counter = 0
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += Xx)
println("Counter value: " + counter)

o Graph representation
m Adjacency lists use less memory than matrices

o More detailed walkthroughs and sample calculations
can be found here

35


https://drive.google.com/file/d/1oqDEj2Ugv6LPMMXU-0WTztskUBbtj26Q/view?usp=sharing

Optimization Hints

Understand RDD manipulations

o Actions vs Transformations

o Lazy transformations

Use the Ambari Ul

o Are you utilizing your cluster completely? How can you
change that? Refer optimization hints in the writeup.

Use the Spark Ul

o Are your RDDs cached as expected?

o Memory errors - check container logs

o Parameter tuning applied successfully?

o Exponential increase in partitions?

How do you represent the node IDs? Int/String/Long?

Many more optimization hints in the writeup! 36



Status of RDD
actions being
computed

In-depth job info

Spark Ul

Provides useful information on your Spark programs
You can learn about resource utilization of your cluster
e |s astepping stone to optimize your jobs

Info about cached

RDDs and

Spoff\z ] Jobs Stages

Storage Environment Executors

Details for Stage 1 (Attempt 0)

Total Time Across All Tasks: 46 ms
Locality Level Summary: Any: 1
Shuffle Read: 50.0 B/ 2

v DAG Visualization

Stage 1

reduceByKey

ShuffledRDD [1]
reduceByKey at <console>:29

» Show Additional Metrics
~ Event Timeline

Enable zooming
[l Scheduler Delay

[l Task Deserialization Time
Shuffle Read Time

Executor Computing Time
Shuffle Write Time
[l Result Serialization Time

Getting Result Time

driver / localhost

30 085 090 095 100 105 110
08:11:09

Summary Metrics for 1 Completed Tasks

Metric Min 25th percentile

Duration 46 ms 46 ms

memory usage

115 120 125 130

Median 75th percentile

46 ms 46 ms

Spark shell application Ul

135 140 145 150

46 ms

37



General Hints

Starter code:

o SparkUtils.scala - Use this for creating SparkSession
objects.

Test out commands on a Zeppelin notebook (refer to the

Zeppelin primer)

Test Driven Development (TDD):

o Starter code contains a small graph test.

o Develop and test locally first! HDInsight clusters are
expensive

o Add more test cases to check robustness.

o Each submission can take anywhere from 6 min to an
hour to run on the cluster.

When in doubt, read the docs!

o SparkSQL

o RDD 38



https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Bonus Task - Databricks

Databricks is an Apache Spark-based unified analytics
platform.

Azure Databricks is optimized for Azure

o Software-as-a-Service

One-click setup, an interactive workspace, and an
optimized Databricks runtime

Optimized connectors to Azure storage platforms for fast
data access

Run the same PageRank application (in Task 2) on Azure
Databricks to compare the differences with Azure
HDInsight

39



How to change your code?

object PageRank {
def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

... Your implementation goes here ...
graphRDD = sc.textFile(inputGraphPath)
graphRDD.map(...)

spark.close()

}

def main(args: Array[String]): Unit = {
val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "wasb:///pagerank-output"
val iterations = 10

calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)

}
} 40



How to change your code?

val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
val sc = spark.sparkContext

val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
val outputPath = "dbfs:/pagerank-output"

val iterations = 10

... Your implementation goes here ...

graphRDD = sc.textFile(inputGraphPath)

graphRDD.map(...)

spark.close()

41



What you need to do for bonus?

You can only get bonus (10 points) when:

o 100% correctness

o Runtime under 30 minutes on Databricks

Copy your code to a Databricks notebook:

o Do not create or destroy SparkSession objects

o Change the output to DBFS instead of WASB
Create a cluster and job using databricks-setup.sh
Submitter takes in a job ID

Don’t forget to destroy resources after you are done!

42



This Week

e OLI, Unit 4: Cloud Storage
O Module 14: Cloud Storage

® Quiz 7 (OLI Module 14)

o Due Friday, March 18th, 2022, 11:59PM ET
® Project 4 - Iterative processing with spark

o Due Sunday, March 27th, 2022, 11:59PM ET

43



Best Wishes on P4l!l!




TEAM PROJECT
Twitter Data Analytics

= + 9= 1T




[ XX EXXXXK]

X

Team Project Time Table ¢ j
Phase Deadline (11:59PM ET)
Phase 1 (20%) | @ M1 CKPT (5%): Sun, 2/27
- M1 e M1 CKPT Report (5%) + Team Intro
- M2 Form: Sun, 2/27
- M3 e M1 FINAL (10%): Sun, 3/6
(ckpt) e M2 CKPT (5%): Sun, 3/6
e M2 FINAL (50%): Sun, 3/20
e M3 CKPT (5%): Sun, 3/20 -
e Final Report + Code (20%): Tue, 3/22
BONUSES:
e M1 Early Bird Bonus (5%): Sun, 2/27
e M2 Early Bird Bonus (5%): Sun, 3/6
e M2 Early Bird Bonus (5%): Sun, 3/6
e M3 Early Bird Bonus (5%): Sun, 3/20 -«
e M3 Correctness Penalty Waiver: Sun, 3/20




Suggested Tasks for Phase 1

Phase 1 weeks Tasks Deadline
Week 1-2 e Team meeting e M1 Checkpoint due on 02/27
e 02/14-02/27 e Read Write Up & Report e Checkpoint Report due on 02/27
e Complete M1 code & achieve correctness
e Start writing M2 solution
e Think about M3 database schema

Week 3 e Optimize for M1 performance e M1 final target due on 03/06
e 02/28-03/06 e Complete correct M2 code ® M2 Checkpoint due on 03/06
e Start ETL process for M3
Week 4-5 ® Optimize for M2 performance e M2 final target due on 03/20
e (03/07-03/20 ® Finish M3 ETL process e M3 Checkpoint due on 03/20
e Complete M3 code & achieve correctness e Final Report due on 03/22

47



Recap of M1 Performance

e Microservice 1
o 55/69 teams achieved full score for M1

M1 Best Teams

Team QRCode Throughput
CloudWatchers 155761.73
Random 125090.89

CaveMen 121991.08

48



Recap of M2 Performance

e Microservice 2
o 49/69 teams had M2 checkpoint bonus
o 953/69 teams made a non-zero score 600s submission
o 37/69 teams achieved full scores for M2

M2 Best Teams

Team Blockchain Throughput
ThreeCobblers 63287.62
ElasticPyjama 53172.53

MainframeComputing 51564.04

49



Recap of M3 Performance

e Microservice 3

Please start early!

50



Twitter Analytics System Architecture

o Building a performant web
service

« Dealing with large scale
real world tweet data

« HBase and MySQL
optimization

Database Query T
Amazon

S3
!
Store lesults
APACHE &
Spark’
9 ?
HTTP R; eeeeee
aslic

Dataproc
HDInsight
Databricsk

EMR

A
Extract
|

Twitter Dataset
~1TB

sssss
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Hourly Budget Reminder

e Your web service should not cost more than $0.70/hour
(if using MySQL) and $1.10/hour (if using HBase)

e This includes:

O

EC2 cost (Even if you use spot instances, we will
calculate your cost using the on-demand instance price)
EBS cost

ELB cost - excluding LCU-hour cost

We will not consider the cost of data transfer and EMR
software

See writeup for details



Resource Constraint Reminder

e Self-managed Kubernetes cluster + optional EMR,
consisting of M family instances only, smaller than or
equal to large type

e MySQL must be installed on Kubernetes cluster
o No standalone EC2 instance, no RDS

e Other types are allowed (e.g., t2.micro) but only for
testing
o Using these for live test submission = 100% penalty

e Only General Purpose (gp2) SSDs are allowed for storage
o e.g m&d is not allowed since it uses NVMe storage

e AWS endpoints only (EC2/ELB).



Loading data & Backup

e Refer to MySQL Primer and Project 3 for data loading

O

O

O

O

P3 YetAnotherlmportTsv can be helpful

Be very careful about escape characters

Be very careful about encodings

You can use temporary EC2 instance or EMR clusters
to load your data

e Backup
o For MySQL, make EBS snapshots of your data

directory and attach it to your Pod

o For HBase, you can backup and restore HBase

database on S3 using the HBase snapshot



https://projects.sailplatform.org/s22-15619/mysql-primer
https://projects.sailplatform.org/s22-15619/cloud-storage
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-snapshot.html

Hints

e |terations rank higher than parameter tuning
o Do not waste time tuning parameters when you have only
one tenth of the target RPS!
o Are all database queries necessary? Can they be done in
your ETL pipelines instead?
o A good schema can easily double or even triple the
throughput with no parameter tuning!

e To do performance tuning, you first need to identify which
part of your system is the bottleneck
o Profile and monitor your system
o Read the Profile Primer for profiling tools



https://projects.sailplatform.org/s22-15619/profiling

Hints

e Web Tier
o Concurrency model?
o Connection pooling?
o Caching result? (no third-party cache library!)
o |s every computation in the web tier necessary?
m Can they be done in ETL instead?
o Have you optimized your code?
m StringBuilder vs '+
m [ry different library (gson vs Jackson vs jsoniter)



Hints

e Storage Tier - MySQL
o Different MySQL engines
o EBS I/O Credits and Burst Performance

e Storage Tier - HBase
o Locality and compaction, region server split, etc
o Scan can be really slow, try to avoid it if possible
If you can't, try to scan as few rows as possible
e Tune parameters «— Should be last thing to do!!
o Check the official documentation
o Search for performance tuning best practices



Best Wishes!!|

IDENTIFY
THE

BOTTLENECK

AND
OPTIMIZE
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