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Reflection of Week Before Spring Break

● Conceptual content on OLI
○ Module 13: Storage and Network Virtualization

● Project 3: Cloud Storage

● Team Project Checkpoint 

● OPE - Spark Programming
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This Week

● OLI, Unit 4: Cloud Storage

○ Module 14: Cloud Storage

○ Module 15: Case Studies: Distributed File System

○ Module 16: Case Studies: NoSQL Databases

○ Module 17: Case Studies: Cloud Object Storage

● Quiz 7 (OLI Module 14)
○ Due Friday, March 18th, 2022, 11:59PM ET

● Project 4 - Iterative processing with spark
○ Due Sunday, March 27th, 2022, 11:59PM ET
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Introduction to MapReduce
• The MapReduce programming model simplifies parallel 

processing by abstracting away the complexities 
involved in working with distributed systems

• Map: Process the input data in chunks in parallel 
• Shuffle and sort
• Reduce: Aggregate or summarize intermediate data in 

parallel and output the result



Typical MapReduce Batch Job

• Simplistic view of a MapReduce job

• You write code to implement the following classes

– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output
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Iterative MapReduce Jobs

• Some applications require iterative processing
• E.g., Machine Learning

• MapReduce: Data is always written to disk

– This leads to added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration
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Apache Spark

• General-purpose cluster computing framework
• APIs in Python, Java, Scala and R
• Runs on Windows and UNIX-like systems
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Apache Spark APIs

● There exists 3 sets of APIs for handling data in Spark

Resilient 
Distributed 

Dataset (RDD)
DataFrame

● Distributed 
collection of 
JVM objects

● Functional 
operators 
(map, filter, etc.)

● Distributed 
collection of 
Row objects

● No compile time 
type safety

● Fast, efficient 
internal 
representations

● Compile time 
type-safe

● Fast
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Datasets



Key to Apache Spark - RDDs

● Resilient Distributed Datasets (RDDs)
● Can be in-memory or on disk
● Read-only objects
● Partitioned across the cluster based on a range or the 

hash of a key in each record

RDD1 RDD1’

RDD2 RDD2’

RDD3 RDD3’

Machine B

Machine A

Machine C

RDD Operation
(e.g. map, filter)
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Operations on RDDs
• Loading data

>>> input_RDD = sc.textFile("text.file")

• Transformation
– Applies an operation to derive a new RDD
– Lazily evaluated -- may not be executed immediately
>>> transform_RDD =  input_RDD.filter(lambda x: "abcd" in x)

• Action
– Forces the computation on an RDD
– Returns a single object
>>> print "Number of “abcd”:" + transform_RDD.count()

• Saving data
>>> output.saveAsTextFile(“hdfs:///output”) 10



RDDs and Fault Tolerance

● Actions create new RDDs

● Uses the notion of lineage to support fault tolerance
○ Lineage is a log of transformations

○ Stores lineage on the driver node

○ Upon node failure, Spark loads data from disk to 

recompute the entire sequence of operations based 

on lineage
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DataFrames and Datasets

● A DataFrame is a collection of rows
○ Tabular
○ Organized into named columns, like a table in a relational 

DB
● A dataset is a collection of objects

○ Domain specific
○ Object oriented
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Operations on DataFrames
• Suppose we have a file people.json
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

• Create a DataFrame with its contents
val df = spark.read.json("people.json")

• Run SQL-like queries against the data
val sqlDF = df.where($"age" > 20).show()
+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

• Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output”)

Note: Parquet is a column-based storage format for Hadoop.
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Spark Ecosystem
● Spark SQL

○ Process structured data
○ Run SQL-like queries against RDDs

● Spark Streaming
○ Ingest data from sources like Kafka
○ Process data with high level functions like map and reduce
○ Output data to live dashboards or databases

● MLlib
○ Machine learning algorithms such as regression
○ Utilities such as linear algebra and statistics

● GraphX
○ Graph-parallel framework
○ Support for graph algorithms and analysis
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https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/


Project 4
Iterative Processing with Spark
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● Task 1: Exploratory Analysis on a graph based dataset

● Task 2: Create an efficient Spark program to calculate 
user influence

● Bonus: Use Azure Databricks to run Task 2



Twitter Social Graph Dataset

● tsv format
● Appx. 10GB of data (do not download)
● Edge list of (follower, followee) pairs

○ Directed
● # of followers distribution → power tail
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Task 1 Exploratory Data Analysis

Two parts to Task 1

● Counting using Zeppelin notebook
○ Find the number of edges
○ Find the number of vertices

● Find top 100 most-popular users
○ RDD API
○ Spark DataFrame API
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Task 2: PageRank

● Started as an algorithm to rank websites in search engine 
results

● Assign ranks based on the number of links pointing to 
them

● A page that has links from
○ Many nodes ⇒ high rank
○ A high-ranking node ⇒ (slightly less) high rank

● Implement Pagerank to find the rank of each user
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Basic PageRank

● How do we measure influence?
○ Intuitively, it should be the node with the most 

followers
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Basic PageRank
● Influence scores are initialized to -

1.0 / # of vertices

0.333 0.333

0.333
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Basic PageRank
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following

0.333 0.333

0.333
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Basic PageRank
● In each iteration of the algorithm, scores of each user are 

redistributed between the users they are following

0.333/2 
= 0.167

0.333 + 0.333/2 
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0
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Basic PageRank
● Convergence is achieved when the scores of nodes do 

not change between iterations 
● PageRank is guaranteed to converge

0.333/2 
= 0.167

0.333 + 0.333/2 
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0
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Basic PageRank
● Convergence is achieved when the scores of nodes do 

not change between iterations
● PageRank is guaranteed to converge

0.208 0.396

0.396
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PageRank Terminology
● Dangling or sink vertex

○ No outgoing edges
○ Redistribute contribution equally among all vertices

● Isolated vertex
○ No incoming and outgoing edges
○ No isolated nodes in Project 4 dataset

Dangling vertex
Isolated vertex
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PageRank Terminology

● Damping factor d
○ Represents the probability that a user clicking on links 

will continue clicking on them, traveling down an edge
○ Use d = 0.85



Visualizing Transitions

● Adjacency matrix:

● Transition matrix: (rows sum to 1)
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Task 2: PageRank
Formula for calculating rank

d = 0.85
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Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and 
dangling vertices are constant in an 
iteration

Let 
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Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and 
dangling vertices are constant in an 
iteration

Let 

This simplifies the formula 
to
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Task 2: PageRank
Formula for calculating rank

d = 0.85
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Task 2: PageRank

Formula for calculating rank

d = 0.85
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Basic PageRank Pseudocode

val links = spark.textFile(...).map(...).cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) 
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap 
{

case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey(_ + _)

   .mapValues(sum => a/N + (1-a)*sum)
}

Reference: https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 33

(Note: This does not meet the requirements of Task 2)

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala


What you need to do for Task 2

● Run your page rank application on a 10GB graph data for 
10 iterations.

● Using HDInsight cluster on Azure:
○ Use the Terraform template provided for 

provisioning the cluster
○ Very expensive - 2.6USD per hour

● Scoring for Task 2 has 2 components:
○ 100% correctness for page rank - 30 points
○ Performance optimization (runtime within 30 

minutes) - 30 points
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Pagerank Hints

● Ensuring correctness
○ Make sure total scores sum to 1.0 in every iteration
○ Understand closures in Spark

■ Do not do something like this
val data = Array(1,2,3,4,5) 

var counter = 0 

var rdd = sc.parallelize(data) 

rdd.foreach(x => counter += x) 

println("Counter value: " + counter)

○ Graph representation

■ Adjacency lists use less memory than matrices

○ More detailed walkthroughs and sample calculations 

can be found here
35

https://drive.google.com/file/d/1oqDEj2Ugv6LPMMXU-0WTztskUBbtj26Q/view?usp=sharing


Optimization Hints
● Understand RDD manipulations

○ Actions vs Transformations

○ Lazy transformations

● Use the Ambari UI

○ Are you utilizing your cluster completely? How can you 

change that? Refer optimization hints in the writeup.

● Use the Spark UI

○ Are your RDDs cached as expected?

○ Memory errors - check container logs

○ Parameter tuning applied successfully?

○ Exponential increase in partitions?

● How do you represent the node IDs? Int/String/Long?

● Many more optimization hints in the writeup! 36



Spark UI
• Provides useful information on your Spark programs
• You can learn about resource utilization of your cluster 
• Is a stepping stone to optimize your jobs

Status of RDD 
actions being 
computed

Info about cached 
RDDs and 
memory usage

In-depth job info

37



General Hints
● Starter code:

○ SparkUtils.scala - Use this for creating SparkSession 
objects.

● Test out commands on a Zeppelin notebook (refer to the 
Zeppelin primer)

● Test Driven Development (TDD):
○ Starter code contains a small graph test.
○ Develop and test locally first! HDInsight clusters are 

expensive
○ Add more test cases to check robustness.
○ Each submission can take anywhere from 6 min to an 

hour to run on the cluster.
● When in doubt, read the docs!

○ SparkSQL
○ RDD 38

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html


Bonus Task - Databricks

● Databricks is an Apache Spark-based unified analytics 

platform.

● Azure Databricks is optimized for Azure

○ Software-as-a-Service

● One-click setup, an interactive workspace, and an 

optimized Databricks runtime

● Optimized connectors to Azure storage platforms for fast 

data access

● Run the same PageRank application (in Task 2) on Azure 

Databricks to compare the differences with Azure 

HDInsight
39



How to change your code?
object PageRank {

  def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {

    val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")

    val sc = spark.sparkContext

    … Your implementation goes here …     

    graphRDD = sc.textFile(inputGraphPath)

    graphRDD.map(...)

    spark.close()

  }

  def main(args: Array[String]): Unit = {

    val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"

    val outputPath = "wasb:///pagerank-output"

    val iterations = 10

    calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)

  }

} 40



How to change your code?
object PageRank {

  def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = 

{

    val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")

    val sc = spark.sparkContext

    val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"

    val outputPath = "dbfs:/pagerank-output"

    val iterations = 10

    … Your implementation goes here …     

    graphRDD = sc.textFile(inputGraphPath)

    graphRDD.map(...)

    spark.close()

  }

  def main(args: Array[String]): Unit = {

    calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)

  }

} 41



What you need to do for bonus?

● You can only get bonus (10 points) when:

○ 100% correctness

○ Runtime under 30 minutes on Databricks

● Copy your code to a Databricks notebook:

○ Do not create or destroy SparkSession objects

○ Change the output to DBFS instead of WASB

● Create a cluster and job using databricks-setup.sh

● Submitter takes in a job ID

● Don’t forget to destroy resources after you are done!
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This Week

● OLI, Unit 4: Cloud Storage

○ Module 14: Cloud Storage

○ Module 15: Case Studies: Distributed File System

○ Module 16: Case Studies: NoSQL Databases

○ Module 17: Case Studies: Cloud Object Storage

● Quiz 7 (OLI Module 14)
○ Due Friday, March 18th, 2022, 11:59PM ET

● Project 4 - Iterative processing with spark
○ Due Sunday, March 27th, 2022, 11:59PM ET
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Best Wishes on P4!!!
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TEAM PROJECT
Twitter Data Analytics



Team Project Time Table
Phase Deadline (11:59PM ET)

Phase 1 (20%)
- M1
- M2
- M3

(ckpt)

● M1 CKPT (5%): Sun, 2/27
● M1 CKPT Report (5%) + Team Intro 

Form: Sun, 2/27
● M1 FINAL (10%): Sun, 3/6
● M2 CKPT (5%): Sun, 3/6
● M2 FINAL (50%): Sun, 3/20
● M3 CKPT (5%): Sun, 3/20
● Final Report + Code (20%): Tue, 3/22
BONUSES:
● M1 Early Bird Bonus (5%): Sun, 2/27
● M2 Early Bird Bonus (5%): Sun, 3/6
● M2 Early Bird Bonus (5%): Sun, 3/6
● M3 Early Bird Bonus (5%): Sun, 3/20
● M3 Correctness Penalty Waiver: Sun, 3/20



Suggested Tasks for Phase 1
Phase 1 weeks Tasks Deadline

Week 1-2
● 02/14 - 02/27

● Team meeting
● Read Write Up & Report
● Complete M1 code & achieve correctness
● Start writing M2 solution
● Think about M3 database schema

● M1 Checkpoint due on 02/27
● Checkpoint Report due on 02/27

Week 3
● 02/28 - 03/06

● Optimize for M1 performance
● Complete correct M2 code
● Start ETL process for M3

● M1 final target due on 03/06
● M2 Checkpoint due on 03/06

Week 4-5
● 03/07 - 03/20

● Optimize for M2 performance
● Finish M3 ETL process
● Complete M3 code & achieve correctness

● M2 final target due on 03/20
● M3 Checkpoint due on 03/20
● Final Report due on 03/22
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Recap of M1 Performance 
● Microservice 1

○ 55/69 teams achieved full score for M1

M1 Best Teams

48

Team QRCode Throughput

CloudWatchers 155761.73

Random 125090.89

CaveMen 121991.08



Recap of M2 Performance
● Microservice 2

○ 49/69 teams had M2 checkpoint bonus
○ 53/69 teams made a non-zero score 600s submission
○ 37/69 teams achieved full scores for M2

M2 Best Teams

49

Team Blockchain Throughput

ThreeCobblers 63287.62

ElasticPyjama 53172.53

MainframeComputing 51564.04



Recap of M3 Performance
● Microservice 3

Please start early!
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Twitter Analytics System Architecture

51

● Building a performant web 
service

● Dealing with large scale 
real world tweet data

● HBase and MySQL 
optimization



Hourly Budget Reminder
● Your web service should not cost more than $0.70/hour 

(if using MySQL) and $1.10/hour (if using HBase)

● This includes:

○ EC2 cost (Even if you use spot instances, we will 
calculate your cost using the on-demand instance price)

○ EBS cost
○ ELB cost - excluding LCU-hour cost
○ We will not consider the cost of data transfer and EMR 

software
○ See writeup for details



Resource Constraint Reminder
● Self-managed Kubernetes cluster + optional EMR, 

consisting of M family instances only, smaller than or 
equal to large type

● MySQL must be installed on Kubernetes cluster
○ No standalone EC2 instance, no RDS

● Other types are allowed (e.g., t2.micro) but only for 
testing
○ Using these for live test submission = 100% penalty

● Only General Purpose (gp2) SSDs are allowed for storage
○ e.g m5d is not allowed since it uses NVMe storage

● AWS endpoints only (EC2/ELB).



Loading data & Backup
● Refer to MySQL Primer and Project 3 for data loading

○ P3 YetAnotherImportTsv can be helpful
○ Be very careful about escape characters
○ Be very careful about encodings
○ You can use temporary EC2 instance or EMR clusters 

to load your data
● Backup

○ For MySQL, make EBS snapshots of your data 
directory and attach it to your Pod

○ For HBase, you can backup and restore HBase 
database on S3 using the HBase snapshot

https://projects.sailplatform.org/s22-15619/mysql-primer
https://projects.sailplatform.org/s22-15619/cloud-storage
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-snapshot.html


Hints
● Iterations rank higher than parameter tuning

○ Do not waste time tuning parameters when you have only 
one tenth of the target RPS!

○ Are all database queries necessary? Can they be done in 
your ETL pipelines instead?

○ A good schema can easily double or even triple the 
throughput with no parameter tuning!

● To do performance tuning, you first need to identify which 
part of your system is the bottleneck
○ Profile and monitor your system
○ Read the Profile Primer for profiling tools

https://projects.sailplatform.org/s22-15619/profiling


Hints
● Web Tier

○ Concurrency model?
○ Connection pooling?
○ Caching result? (no third-party cache library!)
○ Is every computation in the web tier necessary?

■ Can they be done in ETL instead?
○ Have you optimized your code?

■ StringBuilder vs ‘+’
■ Try different library (gson vs Jackson vs jsoniter)



Hints
● Storage Tier - MySQL

○ Different MySQL engines
○ EBS I/O Credits and Burst Performance

● Storage Tier - HBase
○ Locality and compaction, region server split, etc
○ Scan can be really slow, try to avoid it if possible

If you can’t, try to scan as few rows as possible
● Tune parameters ← Should be last thing to do!!

○ Check the official documentation
○ Search for performance tuning best practices
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Best Wishes!!!


