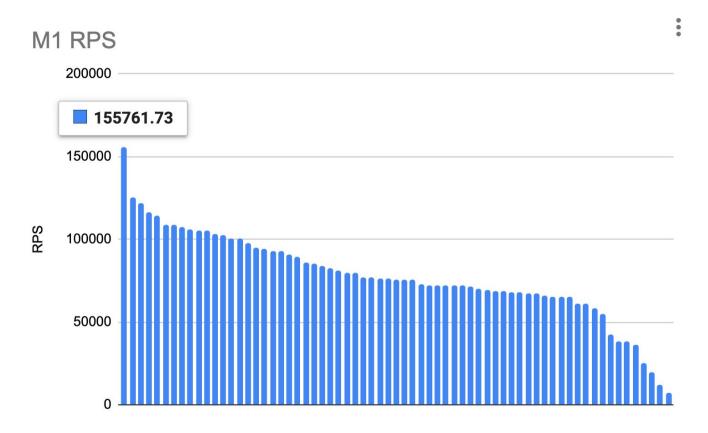
15-319 / 15-619 Cloud Computing

Overview 9 March 22nd, 2022

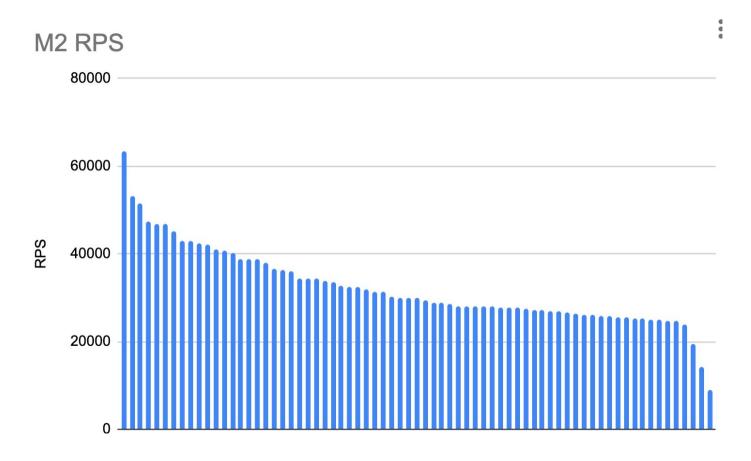
Reflection of Last Week

- OLI, Unit 4: Cloud Storage
 - Module 14: Cloud Storage
 - Module 15: Case Studies: Distributed File System
 - Module 16: Case Studies: NoSQL Databases
 - Module 17: Case Studies: Cloud Object Storage
- Quiz 7 (OLI Module 14)
- Project 4 Iterative processing with Spark
- Team Project Phase 1

This Week

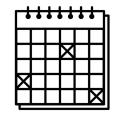

- OLI, Unit 4: Cloud Storage
 - Module 14: Cloud Storage
 - Module 15: Case Studies: Distributed File System
 - Module 16: Case Studies: NoSQL Databases
 - Module 17: Case Studies: Cloud Object Storage
- Quiz 8 (OLI Module 15, 16 and 17)
 - Due on <u>Friday</u>, October 29nd, 2021, 11:59PM ET
- Team Project Phase 1 Report
 - Due on <u>Tuesday</u>, October 26th, 2021, 11:59PM ET
- Team Project Phase 2
 - Started this week!

TEAM PROJECT Twitter Data Analytics

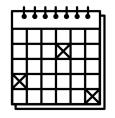

Reflection of Microservice 1

- QR Code Encoding/Decoding
- 54/68 Teams reached target RPS
- Team CloudWatchers reached 155,761 RPS!

Reflection of Microservice 2


- Blockchain Validation/Mining
- 62/68 Teams reached target RPS
- Team ThreeCobblers reached 63,287 RPS!

Reflection of Microservice 3


- 3/68 Teams received the checkpoint
- 2/68 Teams received the early bird bonus
- Please start early in Phase 2!

Team Project Time Table

Task	Timeline		
Phase 2 - M1 - M2 - M3	• Submissions due: Sunday, 04/03/2022 3:59 PM EST		
Phase 2 Live Test	 DNS Submission open: Sunday, 04/03/2022 3:00 PM EST DNS Submission due: Sunday, 04/03/2022 3:59 PM EST 		
Phase 2 Report	• Due: Tuesday, 04/05/2022 11:59 PM EST		

Phase	Deadline (11:59PM EST)		
Phase 3 (50%) - Managed Services for Microservice 1-3 - Live Test!	• Live Test on Sun, 04/17/2022		
Phase 3 Report	 Due: Tuesday, 04/19/2022 23:59 PM EST 		

Live Test Schedule

Time Task Description 4:00 pm DNS Submit your DNS for the Live Test before the deadline 5:33 pm - 5:34 pm DNS Validation We will validate your DNS. This is the last chance to update your DNS for the Live Test

Live Test

ime (at 11:59PM EST)	Value	Target	Weight
:00 pm - 6:30 pm	Warm-up (M1 only)	0	0%
:30 pm - 7:00 pm	M1	65000	12%
:00 pm - 7:30 pm	M2	25000	20%
:30 pm - 8:00 pm	M3	10000	20%
:00 pm - 8:30 pm	Mixed Reads (M1, M2, M3)	15000/10000/2000	8+10+10 = 28%

Task Reminder

- Throughput targets:
 - M1: 65,000 RPS
 - M2: 25,000 RPS
 - M3: 10,000 RPS
 - Mixed queries M1/M2/M3: 15,000/10,000/2,000 RPS

Bonuses

- Live Test Ranking Top 10
 - → Bonus points ranging from 0.5% to 5%
- Achieve 15,000 RPS for M3 during Live Test
 - → Penalty waiver
- Achieve >= 99% correctness for all Live Tests
 - → Penalty waiver

Total Budget Reminder

Budget limit \$80, double budget \$100

	No Penalty	-10% Penalty	-100% Penalty
Total cost	< \$80	\$80 - \$100	\$100+
Development cost	< \$60	\$60 - \$80	\$80+
Live Test cost	~ \$20	~ \$20	~ \$20

- Use GCP and Azure for ETL
- Use Spot instances wisely

Hourly Budget Reminder

- Your web service should not cost more than \$0.70/hour (if using MySQL) and \$1.10/hour (if using HBase)
- This includes:
 - EC2 cost (Even if you use spot instances, we will calculate your cost using the on-demand instance price)
 - EBS cost
 - ELB cost excluding LCU-hour cost
 - We will not consider the cost of data transfer and EMR software
 - See the write up for details

Resource Constraint Reminder

- Self-managed Kubernetes cluster + optional EMR, consisting of M family instances only, smaller than or equal to large type
- MySQL must be installed on the Kubernetes cluster
 - No standalone EC2 instance, no RDS
- Other types are allowed (e.g., t2.micro) but only for testing
 - Using these for the live test submission = 100% penalty
- Only General Purpose (gp2) SSDs are allowed for storage
 - e.g m5d is not allowed since it uses NVMe storage
- AWS endpoints only (EC2/ELB)

Loading data & Backup

- Refer to <u>MySQL Primer</u> and <u>Project 3</u> for data loading
 - P3 YetAnotherImportTsv can be helpful
 - Be very careful about escape characters
 - Be very careful about encodings
 - You can use temporary EC2 instance or EMR clusters to load your data

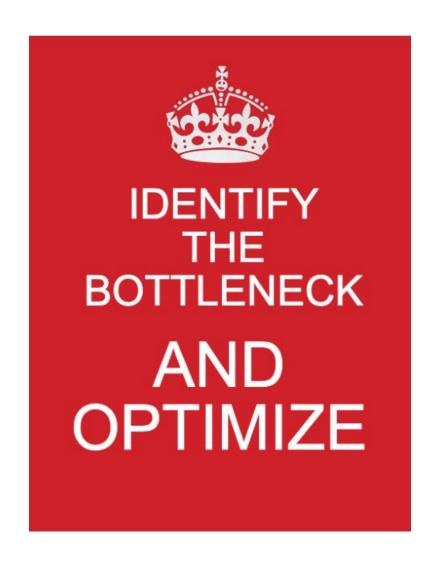
Backup

- For MySQL, make EBS snapshots of your data directory and attach it to your Pod
- For HBase, you can backup and restore HBase database on S3 using the <u>HBase snapshot</u>

- If you haven't completed your ETL yet
 - Make sure to attach enough volume to your instances so that you can load and process the whole data set which is ~1TB.
 - MySQL and HBase have default limits on row/cell size. If you have large cells, the size limit probably needs to be tuned.
- How do I know whether my database schema is good enough to achieve the target throughput?
 - Use profiling to estimate the time your service used for processing one database query, and compare it with the time to process one request
 - Check how many tables you have in your database

- Iterations rank higher than parameter tuning
 - Do not waste time tuning parameters when you have only one tenth of the target RPS!
 - Are all database queries necessary? Can they be done in your ETL pipelines instead?
 - A good schema can easily double or even triple the throughput with no parameter tuning!
- To do performance tuning, you first need to identify which part of your system is the bottleneck
 - Profile and monitor your system
 - Read the <u>Profile Primer</u> for profiling tools

- Web Tier
 - Concurrency model?
 - Connection pooling?
 - Caching result? (no third-party cache library!)
 - Is every computation in the web tier necessary?
 - Can they be done in ETL instead?
 - Have you optimized your code?
 - StringBuilder vs '+'
 - Try different library (gson vs Jackson vs jsoniter)


- Storage Tier MySQL
 - Different MySQL engines
 - EBS I/O Credits and Burst Performance
- Storage Tier HBase
 - Locality and compaction, region server split, etc.
 - Scan can be really slow, try to avoid it if possible
 If you can't, try to scan as few rows as possible
- Tune parameters ← Should be last thing to do!!
 - Check the official documentation
 - Search for performance tuning best practices

Suggested readings

Some suggested readings:

- 1. https://kubernetes.io/docs/tasks/run-application/run-replicated-stateful-application/ for a sample StatefulSet definition
- 2. https://kubernetes.io/docs/concepts/storage/volume-snapshots/#volume-snapshots/#volume-snapshot-contents for defining snapshot with existing content
- 3. https://aws.amazon.com/blogs/containers/using-ebs-snapshots-fo
 r-persistent-storage-with-your-eks-cluster/ for provisioning EBS
 volumes from snapshots (the title says EKS but it also applies to our kOps cluster since we already installed the required controllers)

Best Wishes!!!

