15-319 / 15-619 Cloud Computing

Overview 10 March 29th, 2022

Last Week's Reflection

• Conceptual content on OLI

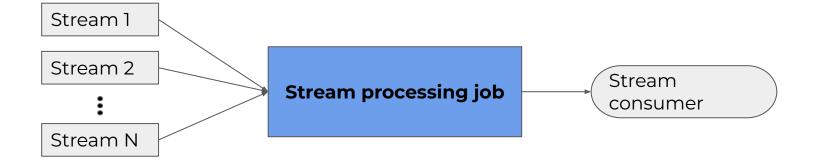
- Module 15: Case Studies: Distributed File System
- Module 16: Case Studies: NoSQL Databases
- Module 17: Case Studies: Cloud Object Storage
- Project 4: Iterative processing with spark
- Team Project Phase 1

This Week

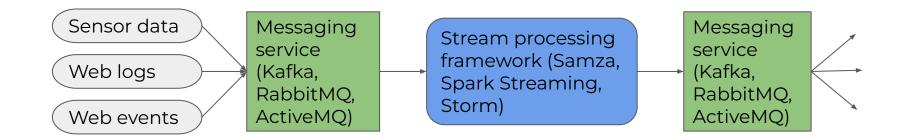
- OLI, Unit 5: Distributed Programming and Analytics Engines for the Cloud
 - Module 18: Introduction to Distributed Programming for the Cloud
 - Module 19: Distributed Analytics Engines for the Cloud: MapReduce
 - Module 20: Distributed Analytics Engines for the Cloud:
 Spark
- Quiz 9 (OLI Module 18)
 - Due <u>Friday</u>, April 1st, 2022, 11:59PM ET
- Project 5 Stream Processing with Kafka and Samza
 - Due **Sunday**, April 10th, 2022, 11:59PM ET

Stream vs. Batch Processing

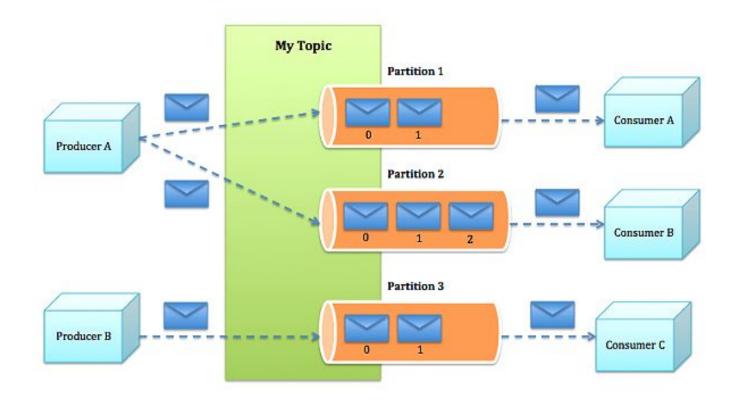
- Batch processing
 - Data parallel, graph parallel
 - Iterative, non-iterative
 - Runs once in few hours/days
 - Historical data analysis
 - Not well suited for real time events streams
- Stream processing
 - Process events as they come
 - Real time decision making
 - Sensor streams/web event data


Typical Batch Processing Job

- Input is collected into static "batches" and processed holistically
 - Represents a single point in time
- Output is consumed sometime later
 - Data (analysis) retains "value" with time


Typical Stream Processing Job

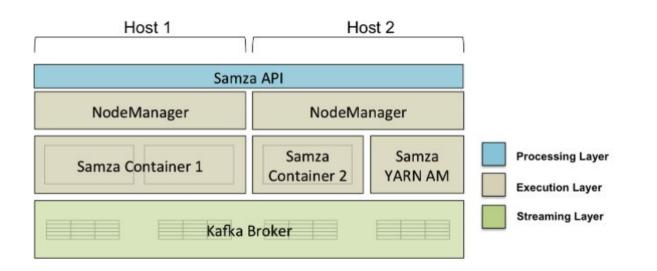
- Data is processed immediately*
 - *Upon queueing
- The processed data is available to downstream consumers for real time decision/analytics


Components of a Stream Processing Job

- An event producer Sensors, web logs, web events
- A messaging service Kafka, RabbitMQ, ActiveMQ
- A stream processing framework Samza, Storm, Spark Streaming

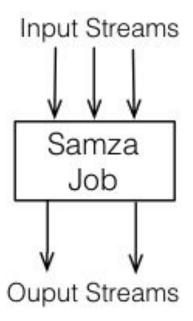
Apache Kafka

• A distributed messaging system developed at LinkedIn.



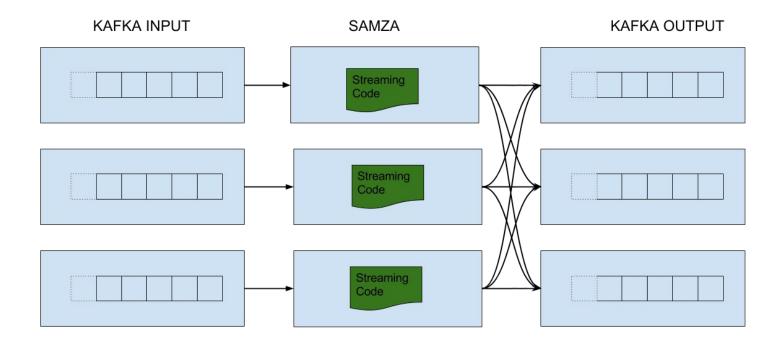
Semantic partitioning in Kafka

- Each topic (stream) is partitioned for scalability across all nodes in the Kafka cluster
- Default partitioning attempts message load balancing
- Streams can also be partitioned semantically by user key of the message
- All messages with the same key arrive to the same partition
- Fault-tolerance: Replication
 - One leader and zero/more followers
 - Replication factor
 - ISR (in-sync replicas)

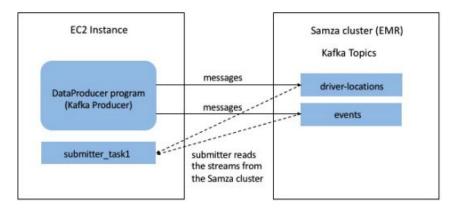

Apache Samza

- Stream processing framework developed at LinkedIn
- Consists of 3 layers:
 - Streaming layer
 - Execution layer
 - Processing (Samza) layer
- Most common use: Kafka for streaming, YARN for execution

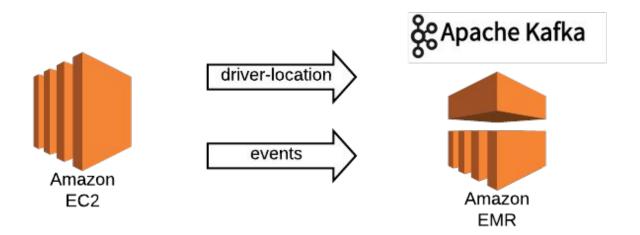
Partitioning in Apache Samza


- Programmer uses the Samza API to perform stream processing
- Each partition in Kafka is assigned to a single Samza task instance

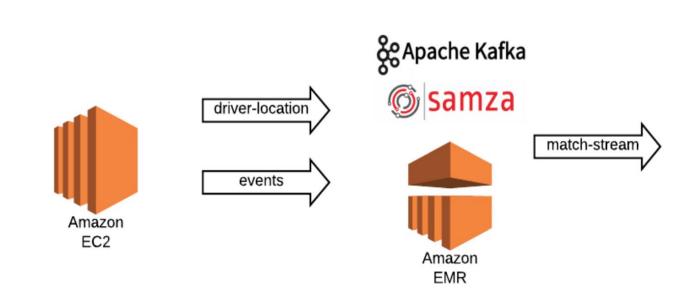
Stateful stream processing in Apache Samza


- Calculate sum, avg, count, etc.
- State in remote data store? slow
- State in local memory? machine might crash
- Solution persistent KV store provided by Samza
 - Changes to KV store persisted to a different stream (usually Kafka) - replay on failure
 - RocksDB currently supported as a persistent KV store
 - You MUST use a persistent KV store for P5!

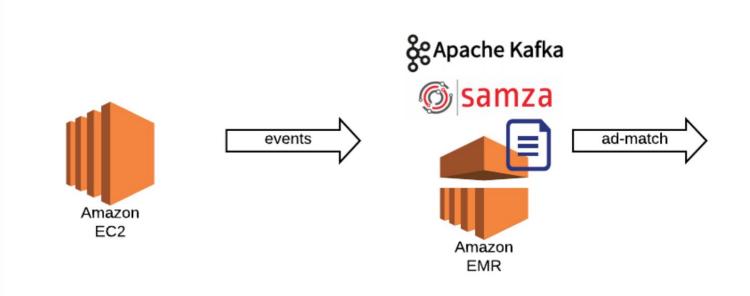
Kafka and Samza, Together


Project 5 - NYCabs (NYC based Taxi Service)

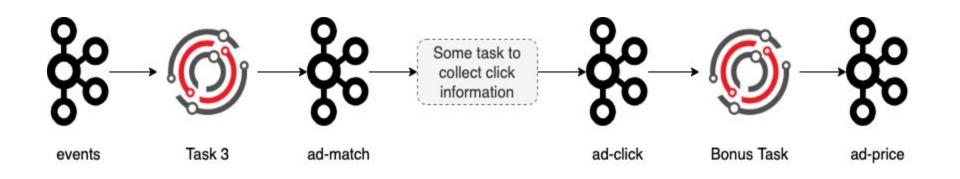
- Stream Processing with Kafka/Samza
 - Stream 1: Car GPS coordinates
 - Stream 2: Riders
- Task
 - Match riders with drivers to minimize travel time & other constraints
- Using AWS
 - Proper tags and track budget



- Simulate the scenario that the **drivers** update their locations on a regular basis as they move in the city and the **clients** request rides at some time.
- Data
 - Tracefile -> Two streams
 - DRIVER_LOCATION -> driver_locations stream
 - LEAVING_BLOCK, ENTERING_BLOCK, RIDE_REQUEST, RIDE_COMPLETE -> events stream


- You will run your producer program on your student AMI instance
- The producer program will publish the data into Kafka brokers.
- The submitter for Task 1 is located on the student AMI instance.

- Use the same producer program used in Task 1.
- Find the best match for a ride request with a driver located in the same block as the rider based on published data



- Find the best advertisement to place for a specific user.
- Utilize BOTH static data(user profile, health status and interests) and stream data to make this decision.

Bonus Task

- Find the advertisement price that a restaurant is paying to NYCabs and the advertising company.
- Write **at least 2** unit test test cases.

Debugging (Important!!)

• Use the YARN UI without opening unsafe ports to public

- Ssh tunneling
- Opening the port only to your IP address using AWS console
- Debugging with YARN logs
 - Yarn commands
 - >> yarn application -list
 - From YARN UI
 - From container logs
- Output a kafka stream for debugging
- Refer Introduction to Kafka and Samza primer for detailed steps

Cloud Security Note

- Never open unsafe ports of a Hadoop cluster to public, or it will get compromised and implicated in DDOS attacks, cryptomining, etc.
- In general, failing to protect a cloud resource can get it compromised and exploited, such as becoming a source to launch DDoS attack
 - A distributed denial-of-service (DDoS) attack is a malicious attempt to disrupt the normal traffic of server
 - DDoS attacks achieve effectiveness by utilizing as many compromised computer systems
 - DDoS attacks are often used as leverage for blackmail, therefore hacking groups are motivated to grow their DDOS capacity

Upcoming Deadlines

- Quiz 9 (OLI Module 18)
 - Due Friday, April 1st, 2022, 11:59PM ET
- Project 5 Stream Processing with Kafka and Samza
 - Due <u>Sunday</u>, April 10th, 2022, 11:59PM ET
- Team Project Phase 2 Live Test
 - Due <u>Sunday</u>, April 3rd, 2022, 11:59PM ET
- Team Project Phase 2
 - Due **<u>Tuesday</u>**, April 5th, 2022, 11:59PM ET