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ABSTRACT

Speech recognition accuracy degrades significantly when the speech
has been corrupted by noise, especially when the system has been
trained on clean speech. Many robust techniques have been de-
veloped which require reliable online noise estimates or a priori
knowledge of the noise. In situations where such estimates or
knowledge is difficult to obtain, these methods fail. We present
a new robustness algorithm which avoids these problems by mak-
ing no assumptions about the corrupting noise. Instead, we exploit
properties inherent to the speech signal itself to denoise the recog-
nition features. In this method, speech is decomposed into har-
monic and noise-like components, which are then processed inde-
pendently and recombined. By processing noise-corrupted speech
in this manner we are able to achieve significant improvements in
recognition accuracy on the Aurora 2 task.

1. INTRODUCTION

The performance of automatic speech recognition systems degrades
significantly when the speech signal is corrupted by additive noise.
This is a major obstacle to the widespread deployment of speech
recognition systems in real-world applications. Many algorithms
have been proposed in the literature to compensate for the detri-
mental effect additive noise has on recognition performance. Many
of these methods, such as [1], rely on an accurate estimation of the
corrupting noise signal. This in itself is a very difficult problem
in situations where the environmental noise is non-stationary. In
such conditions, these methods fail.

Other methods rely on the use of noise models for compen-
sation (e.g. [2]), or train a recognition system on noise-corrupted
speech. When the test conditions are well-matched to the noise
model or the training conditions, such methods perform well. How-
ever, it is impossible to account for the sheer variety of noises
found in real world environments.

However, in all of these situations, the human user remains
constant. That is, environmental noise has no affect on the speech
production mechanism. As a result, we can improve the robustness
of speech recognition systems by finding ways to exploit proper-
ties of the human speech signal itself. Algorithms created based
on this premise can potentially perform well without making any
assumptions about the noise signal or its properties.

One such feature of speech is the strong presence of a funda-
mental frequency and its harmonics in voiced speech. The fact that
voiced speech has a well-understood, predictable harmonic struc-
ture makes this feature attractive as the basis for noise compensa-
tion algorithms. Several researchers have explored the use of the

harmonicity of voiced speech for robust speech recognition. For
example, Gu and Rose developed Perceptual Harmonic Cepstral
Coefficients, which utilize a peak-picking algorithm to emphasize
the harmonic spectral peaks in voiced speech [3]. In [4], Ealey et
al. developed a harmonic “tunnelling” algorithm in which noise
estimation is performed based on the nulls between the harmonic
peaks in the spectrum which is used for spectral subtraction.

Over the last several years, the field of speech coding has
benefitted from exploiting this harmonic structure of speech sig-
nals. Harmonic coding schemes are based on the principle that
speech can be decomposed into a deterministic (also called pe-
riodic or harmonic) component and a noise-like or random com-
ponent. Each of these signals can then be parameterized sepa-
rately by exploiting the properties inherent in each one. Various re-
searchers have proposed methods of performing such a decompo-
sition. In [5], Yegnanarayana et al. use an iterative comb-filtering
approach to perform the decomposition, while Laroche et al. pro-
posed a harmonic+noise model in which a sum-of-sinusoids model
is fit to the speech signal [6].

In this paper, we present an new algorithm for generating noise-
robust feautures for speech recognition based on the harmonic+noise
model (HNM) in [6]. Like most speech coding methods, the HNM
aims to find a parameterization which most accurately represents
the input signal. It has no noise-reduction capability, and does not
differentiate between speech and environmental noise. As a result,
the HNM will not inherently improve recognition accuracy.

However, the capability to decompose the speech signal into
two different signals with known properties provides an appealing
framework for noise compensation; once the signal has been split
into its harmonic and random parts, each one can be processed in-
dependently, and then recombined to generate an enhanced signal.
We present an novel extension of this model, called the weighted
harmonic+noise model, and describe how it can be used to extract
cleaner speech features from noise-corrupted speech in order to
achieve significant improvements in recognition accuracy.

In Section 2 we review the harmonic+noise model, and dis-
cuss its application to noisy speech. In Section 3 we describe the
proposed weighted HNM for improving the harmonic/stochastic
decomposition in noisy speech in order to generate enhanced fea-
tures. Experimental results evalulating our method are presented
in Section 4. Finally, we summarize our findings in Section 5.

2. HARMONIC+NOISE MODEL OF SPEECH

The harmonic+noise model (HNM) of speech is based on the premise
that a speech signal x is composed of a deterministic signal xh and



a random signal xr. It is assumed that the deterministic component
is well-modeled as a sum of harmonically-related sinusoids given
by

xh(t) =

K∑

k=1

ak cos(kω0t) + bk sin(kω0t) (1)

where ω0 is the fundamental frequency and K is the total number
of harmonics in the signal. Given a frame of speech, we would
like to estimate the parameters of this harmonic model, namely the
pitch or fundamental frequency ω0 and the values of the ampli-
tude parameters {a1, a2, . . . , aK , b1, b2, . . . , bK}. The pitch can
be estimated using any number of pitch tracking algorithms in
the literature. Given an estimate of the pitch, we can determine
a least-squares solution for the amplitude parameters. To do so,
we rewrite (1) in vector form as

x = Ab

where x is a vector of N samples, A is an N × 2K matrix given
by

A = [Acos Asin]

with elements

Acos(k, t) = cos(kω0t) Asin(k, t) = sin(kω0t)

and b is a 2K × 1 vector given by

bT = [a1 a2 . . . aK b1 b2 . . . bK ]

Then, the least-squares solution for the amplitude coefficients is

b̂ = (ATA)−1ATx (2)

Using b̂, we can get an estimate for the deterministic portion of
the speech signal, xh

x̂h = Ab̂ (3)

An estimate of the random component is then obtained simply as

x̂r = x − x̂h (4)

The HNM algorithm has no noise-reduction capability. It was
designed to accurately capture the salient information present in
the signal. Thus, when the HNM is applied to a speech signal
corrupted by additive noise, the resulting harmonic and random
components will be distorted by the noise. More explicitly, a HNM
decomposition of noisy speech produces

y = yh + yr (5)

= xh + nh + xr + nr (6)

where nh is the portion of the noise signal which resides at the
harmonics of the fundamental frequency and nr is the noise at the
non-harmonic frequencies. Thus, while a particular frame may
have a given signal-to-noise ratio (SNR), the SNR of the harmonic
and random components may be quite different depending on the
energies of the speech and noise captured by each component.

If we have knowledge of the pitch and voicing state of the
speech, we can use the harmonic model to help separate the signal
from the noise. For example, in highly voiced frames, we know
that a clean speech signal will be captured almost entirely by the
harmonic component. Therefore, we can infer that any residual
signal captured by the random component is mostly noise.

In the next section, we describe how we can apply the HNM to
speech corrupted by additive noise to generate enhanced features
for speech recognition.

3. A WEIGHTED HNM FRONT END FOR SPEECH
RECOGNITION

Conventional Mel-frequency cepstral coefficients (MFCC) are de-
rived for a frame of speech as follows. First a window is applied to
a frame of speech, followed by a DFT. The power spectrum of the
signal is then computed and the spectrum is smoothed using a se-
ries of triangular weighting functions applied along the Mel scale
to capture the energy in a series of overlapping frequency bands.
If we define X as the Mel spectral vector for a frame of speech x,
we can explicitly express the Mel spectrum as

X = M|DFT (x)|2

where M is the matrix of Mel weighting coefficients. Finally, a
truncated DCT is the applied to the logarithm of this Mel spectrum.

If we assume the harmonic and random components gener-
ated by the HNM are uncorrelated, the Mel spectrum of a frame
of speech is simply the sum of the Mel spectra of the harmonic
and random components. If we assume that the noise and the
speech are also uncorrelated, then we can translate equations (5)
and (6) directly into the Mel-spectral domain. Moreover, because
Mel spectrum is a measure of energy, we can conclude that the
observed noisy Mel spectral value is an upper bound on the ac-
tual clean speech value, i.e. X ≤ Y , where X and Y represent a
Mel spectral component of the clean and noise-corrupted speech,
respectively.

Based on these observations, we can derive an estimate for
the clean Mel spectral component of a noise-corrupted frame of
speech within the framework of the HNM.

X̂ = αhYh + αrYr 0 ≤ αh, αr ≤ 1 (7)

where Yh, and Yr are Mel spectral components of the harmonic
and random signals of the observed speech frame, respectively,
and αh and αr are scaling factors applied to these components.
We call this the Weighted Harmonic+Noise Model (WHNM) to
emphasize the fact that we are using scaled versions of the har-
monic and random components to obtain an estimate of features
of the underlying clean speech signal.

Clearly, the key to the success of this model is the accurate es-
timation of the scaling parameters αh and αr . It is apparent from
(6) that they are a function of SNR. There are several potential
methods for estimating these parameters. In this work, we chose
to utilize the HNM framework itself in order to estimate these pa-
rameters. We assume for simplicity that a single scaling parameter
can be applied to the entire Mel spectral vector. As mentioned in
Section 2, the harmonic component of the HNM decomposition to
capture most of the signal energy for strongly voiced frames when
the signal is clean. As noise corrupts these frames, more energy
will be present in the random component, and the proportion of
the total signal energy captured by the harmonic component of the
signal will decrease. This observation leads to an estimate for αh.

αh =

∑
i yh(i)2∑
i y(i)2

(8)

where the numerator represents the harmonic energy in the frame,
and the denominator is the total energy of the frame. From (5),
it is clear that this estimate will always be between 0 and 1. Fig-
ure 1 shows αh for the frames of the utterance “2-7-oh-6-5-7-1”
for clean speech and speech corrupted by subway noise to various
SNRs from 20 dB down to -5 dB. The estimated voiced/unvoiced
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Fig. 1. αh vs. time for an utterance corrupted by subway noise
to various SNRs. The top left plot shows the voiced/unvoiced la-
belling.

labeling is plotted as well. The plots clearly show that αh has a
high correlation to the SNR in the voiced regions. In the unvoiced
and silence frames, this measure of αh serves simply as an energy-
reduction parameter. While this estimate of αh is sub-optimal for
these segments, we found a significant benefit from processing
all frames in the same manner, regardless of voicing state. This
ensures that transition frames between voiced and unvoiced seg-
ments, whose harmonic and random components both contain sig-
nificant information, are processed consistently. This reduces the
frame-to-frame variability of the resulting features which is crit-
ical for accurate estimation of the delta and acceleration cepstal
features used for recognition.

Obtaining an estimate for the scaling parameter of the random
signal component is a more difficult task. Due to the very na-
ture of the signal, there is no predictable underlying structure we
can exploit. As with αh, we expect αr to be a function of SNR.
In an attempt to learn this function from data, an experiment was
performed studying the recognition performance obtained when
a range of values of αr are used with the estimate of αh given
by (8). Figure 2 shows the absolute improvement over baseline
performance (no compensation) in word accuracy as a function of
SNR for various values of αr . In this experiment, the pitch estima-
tion was performed on clean speech. As the plot indicates, there is
a single value for αr which results in the best performance across
all SNRs.

Based on these results, we can rewrite the WHNM formulation
for Mel spectral estimation as

X̂(t) = αh(t)Yh(t) + αrYr(t) (9)

where the time index t has been added to emphasize that αh is
a time-varying parameter, while αr is fixed. The value of αh is
computed according to (8) and αr can be optimized using a cross-
validation set.

4. EXPERIMENTAL RESULTS

To test the performance of the proposed Weighted Harmonic+Noise
Model algorithm, experiments were conducted using the Aurora 2
corpus [7]. This corpus consists of strings of connected digits,
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Fig. 2. Absolute improvement over baseline vs. SNR using various
constant values of αr using pitch estimates from clean speech.

corrupted by several different noises to SNRs between -5 and 20
dB. Speech recognition was performed using the HTK recogni-
tion system. The system was trained using the Aurora clean train-
ing set. Whole word models were trained using conventional 39
dimensional features vectors composed of 13-dimensional Mel-
frequency cepstral coefficients plus the delta and accleleration fea-
tures. In our experiments, a frame size of 20ms was used, rather
than the 25ms specified in the Aurora standard, in order to reduce
the variability of pitch within a frame. All other front-end, train-
ing, and testing specifications matched the Aurora specification.

The WHNM-based feature extraction process is as follows.
For each utterance, pitch and voicing state estimation is performed.
Frames labeled as non-voiced are assigned a pitch of 150 Hz. For
each frame, the harmonic and random components of the signal are
then computed using equations (2), (3), and (4). The Mel spectra
of both the harmonic and random signals are computed and then
the final Mel spectrum of the frame is computed as the weighted
sum of the two, according to (9). Finally, the MFCC feature vec-
tor is computed by taking the DCT of the logarithm of the Mel
spectrum.

As described in Section 3, the algorithm requires the use of a
cross-validation set to determine the optimal value of αr , the scal-
ing parameter for the random component of the observed noisy
Mel spectra. We employed the Aurora Test Set A for this pur-
pose. The data set consists of utterances corrupted with one of
four noises (babble, subway, car, exhibition hall) to SNRs between
-5 and 20 dB.

For the cross-validation set, pitch estimates were made di-
rectly on the noise-corrupted speech data using the MAP pitch
estimation method described in [8]. For each utterance, αh was
computed for each frame using (8). αr was held constant over
all utterances and a range of values were tested. Figure 3 shows
the absolute improvement in word accuracy over baseline perfor-
mance for the cross-validation test set for various values of αr. For
comparison, the performance achieved with the best-performing
αr value when using pitch estimates from clean speech is also
shown.

As the figure indicates, setting αr to 0.10 produced the best
overall recognition accuracy. However, the figure also indicates
that performance is not that sensitive to the value of αr . It is in-
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Fig. 3. Absolute improvement over baseline vs. SNR using var-
ious constant values of αr on the cross-validation set when pitch
estimates are made from noisy speech data. The performance us-
ing pitch estimates from clean speech is shown for comparion.

teresting to note the extremely poor performance when αr is set
to 0 and the random component is completely removed from the
signal. When this occurs, strict harmonicity is imposed on all seg-
ments of speech, including partially voiced and unvoiced frames.
Because unvoiced and partially voiced speech contain discrimina-
tive information at the non-harmonic frequencies, removing this
information results in poor performance.

Using the value of αr = 0.10 determined from cross-validation,
recognition experiments were run on Aurora Test Set B. This test
set consists of connected digit strings corrupted by four different
noises (restaurant, street, airport, train station) to SNRs between
-5 and 20 dB. There is no overlap between the cross-validation set
and the test set. Figure 4 shows the recognition accuracy as a func-
tion of SNR when the proposed algorithm is applied to the Test Set
B with αr = 0.10. The rightmost datapoint on the plot indicates
the recognition accuracy on clean speech. For comparison, base-
line performance without compensation is also shown. As the plot
indicates, significant improvements over baseline recognition ac-
curacy were achieved using the proposed method. A comparison
of Figures 3 and 4 shows that the actual performance obtained on
the test set was quite close to that obtained on the cross-validation
set. From this we can conclude that the optimal choice of αr is not
sensitive to noise type, as the cross-validation and test sets had no
overlap in corrupting noise types.

5. SUMMARY

The harmonic+noise model decomposes a speech signal into its
harmonic and random components. This decomposition provides
a framework in which these signal components can be process-
ing independently, allowing us to exploit the properties inherent in
each one. In this paper, we have used this framework to improve
the robustness of speech recognition systems to additive noise.
We introduced the weighted harmonic+noise model in the Mel-
spectral domain in which the features are derived from the har-
monic and random components independently, denoised, and then
recombined to generate an enhanced final feature vector. By pro-
cessing the noise-corrupted speech in this manner, we are able to
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Fig. 4. % Word Accuracy vs. SNR for Aurora Test Set B using
αr = 0.10 and pitch estimates from noisy speech.

achieve significant improvements in recognition accuracy without
making any assumptions about the corrupting noise.
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