Calibration of Microphone Arrays for Improved Speech Recognition

Michael L.Seltzer¹ and Bhiksha Raj²

- Department of Electrical and Computer Engineering and School of Computer Science
 Carnegie Mellon University
 Pittsburgh, PA 15217 USA
 Mitsubishi Electric Research Lab
 Cambridge, MA 02139 USA
 - 4 September 2001

Introduction

- Current speech recognition technology is capable of good performance in quiet conditions with close-talking microphones.
- In many applications, the environment is noisy and the use of a close-talking microphone is impossible or inconvenient.
- As the distance between the user and the microphone grows, the signal is increasingly susceptible to distortions from the environment.
- Using an array of microphones, rather than a single microphone, has been proposed as a solution to this problem.

Microphone Array Processing

• Combine multiple signals captured by the array to obtain a higher quality output signal, as judged (typically) by a *human listener*.

- Many array processing methods exist:
 - Fixed/adaptive schemes, de-reverberation techniques, blind source separation.
- The objective of these methods is speech enhancement, a signal processing problem.

CMU Robust Speech Group

Automatic Speech Recognition (ASR)

- Parameterize speech signal and compare parameter sequence to statistical models of speech sound units to hypothesize what a user said.
- The speech signal is interpreted by a *machine*.

$$s[n] \longrightarrow \begin{array}{c} \text{Feature} \\ \text{Feature} \\ \text{Extraction} \end{array} \left\{ \begin{array}{c} O_1, \dots, O_N \\ O_1, \dots, O_N \\ \text{Extraction} \end{array} \right\} \begin{array}{c} \text{ASR} \\ \text{AM} \\ \text{P}(O|W) \\ \text{P}(O|W) \\ \text{IM} \\ \text{P}(W) \end{array} \left\{ \begin{array}{c} P(W \mid O) = \frac{P(O \mid W)P(W)}{P(O)} \\ \rightarrow \{\hat{W}_1, \dots, \hat{W}_M \} \end{array} \right\}$$

• The objective is accurate recognition, a statistical pattern classification problem.

CMU Robust Speech Group

ASR with Microphone Arrays

- Recognition with microphone arrays has been performed by "gluing" the two systems together.
- We believe this is not the ideal approach.
 - Systems have different objectives.
 - Each system does not exploit information present in the other.

A new approach

- Consider array processor and speech recognizer to be components of a single interconnected system which allows information to pass in both directions.
- Develop an array processing scheme specifically targeted at improved speech recognition performance without regard to conventional array processing objective criteria.

ASR-based Array Processing

• The simplest beamforming technique (delay and sum) simply averages the signals together:

$$y[n] = \frac{1}{N} \sum_{i=1}^{N} x_i [n - T_i]$$

• Others weight or filter the signals before combining:

 $y[n] = \sum \alpha_i x_i [n - T_i] \qquad y[n] = \sum h_i [n] \otimes x_i [n - T_i]$

 How do we choose the weights or filter coefficients to improve speech recognition performance?

What criterion do we want?

• Want an objective function that uses parameters directly related to recognition

An Objective Function for ASR

 Define Q as the SSE of the log Mel spectra of clean speech s and noisy speech y

$$Q = \sum_{f} \sum_{l} \left(M_{y}[f, l] - M_{s}[f, l] \right)^{2}$$

where y is the output of a filter-and-sum microphone array and M[f, l] is the l^{th} log Mel spectral value in frame f.

M_y[*f*, *l*] is a function of the signals captured by the array and the filter parameters associated with each microphone.

Calibration of Microphone Arrays for ASR

- Calibration of Filter-and-Sum Microphone Array:
 - Have a user speak an utterance with known transcription.
 - With or without close-talking microphone
 - Derive optimal set of filters.
 - Minimize the objective function with respect to the filter coefficients.
 - Since objective function is non-linear, use iterative gradientbased methods.
 - Apply to all future speech.

Calibration Using Close-talking Recording

 Given the close-talking mic recording for the calibration utterance, derive an "optimal" filter for each channel to improve recognition

Multi-microphone data sets

• TMS

- Recorded in the CMU Speech Lab
 - Approx. 5m x 5m x 3m
 - Noise from computer fans, blowers ,etc.
- Isolated letters and digits, keywords
- 10 speakers * 14 utterances= 140 utterances
- Each utterance has closetalking mic control waveform

Multi-microphone data sets (2)

- WSJ + off-axis noise source
 - Room simulation created using the image method
 - 5m x 4m x 3m
 - 200ms reverberation time
 - WGN source @ 5dB SNR
 - WSJ test set
 - 5K word vocabulary
 - 10 speakers * 65 utterances = 650 utterances
 - Original recordings used as close-talking control waveforms

Results

- TMS data set, WSJ0 + WGN point source simulation
 - Constructed 50 point filters from a single calibration utterance
 - Applied filters to all test utterances

Calibration without Close-talking Microphone

- Obtain initial waveform estimate using conventional array processing technique (*e.g.* delay and sum).
- Use transcription and the recognizer to estimate the sequence of target clean log Mel spectra.
- Optimize filter parameters as before.

Calibration w/o Close-talking Microphone (2)

 Force align the delay-and-sum waveform to the known transcription to generate an estimated HMM state sequence.

Calibration w/o Close-talking Microphone (3)

- Extract the means from the single Gaussian HMMs of the estimated state sequence.
 - Since the models have been trained from clean speech, use these means as the target clean speech feature vectors.

$$\{\hat{q}_1, \hat{q}_2, ..., \hat{q}_N\} \longrightarrow HMM \xrightarrow{\{\mu_1, \mu_2, ..., \mu_N\}} IDCT \longrightarrow \hat{M}_S$$

Calibration w/o Close-talking Microphone (4)

• Use estimated clean speech feature vectors to optimize filters as before.

Results

• TMS data set, WSJ0 + WGN point source simulation

- Constructed 50 point filters from calibration utterance
- Applied filters to all utterances

CMU Robust Speech Group

Results (2)

• WER vs. SNR for WSJ + WGN

- Constructed 50 point filters from calibration utterance using transcription only
- Applied filters to all utterances

Is Joint Filter Estimation Necessary?

- We compared 4 cases:
 - Delay and Sum
 - Optimize 1 filter for Delay and Sum Output
 - Optimize Microphone Array Filters Independently
 - Optimize Microphone Array Filters Jointly

Summary and Future Work

- We have presented a new microphone array calibration scheme specifically designed for speech recognition.
- We have achieved improvements in WER of up to 37% over conventional Delay and Sum processing using this method.
- Successfully fedback information from the recognizer all the way back to the waveform level.
- We plan to investigate the following extensions to the algorithm: reverberation compensation, unsupervised optimization, filter adaptation.