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Note that instead of explicitly labeling the data and then counting state transitions as we
do with labeled data, the association of symbols and states is implicit in the re-estimation
process in the inner loop of the algorithm.
Ei(σ) is the expected number of times that σ is emitted from state Ei:

Ei(σ) =
∑
d

P (qdt = Ei, O
d
t = σ|Od, λ) (5.10)

=
∑
d

∑
{t|Odt=σ} α(t, i) β(t+ 1, i)

P (Od)
. (5.11)

Again, the quantities on the right hand side can be calculated using the Forward and
Backward algorithms. Finally, the initial probability πi is given by

πi =
k∑
d=1

p(qd1 = Si|Od, λ) (5.12)

=
k∑
d=1

Id(i)

P (Od)
(5.13)

It can be proven that if current estimate is replaced by these new estimates then
the likelihood of the data will not decrease (i.e. will increase unless already at a local
maximum/critical point). See Durbin, Section 11.6 for discussion of avoiding local maxima
and other typical pitfalls with this algorithm.

The Baum-Welch algorithm estimates the values of the parameters from training data
and, thus, implicitly discovers the motif. Baum-Welch does output an explicit description
of the motif. To determine the motif explicitly, the Viterbi or posterior decoding are used
to label each of the input sequences.

5.8 Profile HMMs

In 1994, Krogh, Haussler2 and colleagues introduced a generic HMM topology specifically
designed to model conserved sequence motifs. It captures the propensity to observe specific
amino acids or nucleotides at each position in a pattern and allows for insertions and
deletions. This topology, called a Profile HMM, can be customized for a broad range of
conserved motifs by selecting the appropriate length for a given motif and initializing the
parameters to capture the specific properties of the motif.

Here, we introduce the features of the Profile HMM model by showing how it could be
used to model the WEIRD motif based on the following alignment, which has no gaps and no
positional dependencies:

2Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. (1994). Hidden Markov models in
computational biology: Applications to protein modeling. J. Mol. Biol., 235:1501-1531.
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Figure 5.10: A HMM for modeling fixed length motifs. Note that this HMM is equivalent
to a Position Specific Scoring Matrix.
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We can recognize the WEIRD motif using an HMM with the simple topology shown in
Fig. 5.10, where the transitions probabilities are

aMi,Mj

{
1, if j = i+1

0, otherwise
.

The emission probabilities can be estimated from labeled training sequences. Given an
ungapped multiple alignment of k sequences, the emission probabilities are

eMi(σ) =
c[σ, i]+b

k+b|Σ|
, (5.14)

where c[σ, i] is the number of σ’s at position i in the training motif and b is a pseudocount.
The Start and End states (M0 and M6 in Fig. 5.10) are silent. Note that eMi(σ) is equivalent
to q[σ, i], the frequency matrix that we derived for the PSSM example using pseudocounts.
Moreover, when EMi(σ) = c[σ, i], Equation 5.14 is equivalent to the general definition of
emission probabilities for an HMM given in Equation 5.6.

In order to assess whether a new sequence, O, contains an instance of the WEIRD motif,
we calculate a likelihood ratio:

P (O|HA)

P (O|HO)
.

Our alternate hypothesis, HA, is that O is an instance of the motif represented by the
HMM in Fig. 5.10. In order to obtain a likelihood ratio, we also need a model of the null
hypothesis, H0, that the amino acids in O were sampled from the background distribution.
Fig. 5.11 shows a very simple null model. In this model, all transition probabilities are equal
to one. The emission probability e(σ) is defined to be p(σ), where p(σ) is the background
frequency of residue σ.
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Figure 5.11: An HMM representing the null model. Each symbol, σ, is emitted with
probability p(σ), the background frequency of σ.

Given these two models, we can score O by calculating the probability that O was
emitted by the Profile HMM in Fig. 5.10 and comparing it with the probability that O was
emitted by the background model in Fig. 5.11. For example, if O = O1O2O3O4O5, then
P (O|HA) is equal to

πMO
·eM1(O1) ·aMOM1 ·eM2(O2) ·aM2M3 ·eM3(O3) ·aM3M4 ·eM4(O4) ·aM4M5 ·eM5(O5) ·aM5M6 .

Since the initial and transition probabilities are equal to one (πMO
= 1; aMiMi+1 = 1, 0 ≤

i ≤ 5), this reduces to

P (O|HA) = eM1(O1) · eM2(O2) · eM3(O3) · eM4(O4) · eM5(O5)

or

P (O|HA) =
5∏
t=1

eMt(Ot) .

The probability that O was emitted by the background model is
∏5
t=1 p(Ot). The score of

sequence O is the log likelihood ratio

5∑
t=1

log
eMt(Ot)

p(Ot)
,

which is equivalent to
∑5

t=1 S[Ot, i], the score we would have obtained with the PSSM for
the WEIRD motif.

We now have an HMM that is equivalent to a PSSM for a conserved motif. It can be
used to identify motifs of a fixed size, but not cannot handle variations in length. We next
extend this model to accommodate insertions and deletions. We can modify the basic HMM
to recognize motif instances with insertions, such as O = WECIRD, by adding an insertion
state between any two match states, Mi and Mi+1, as shown in Fig. 5.12a. The emission
probabilities for the insertion state are the background frequencies.

We also wish to recognize motif instances with deletions, e.g., O = WERD. One approach
to capturing such deletions would be to add edges allowing us to jump over any set of
match states. An example of this is shown in Fig. 5.12b. The disadvantage to this approach
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(a) Insertion model

(b) Deletion model with many transitions

(c) Deletion model with fewer transitions

Figure 5.12: (a) Additional insertion states enable recognition of pattern instances with
insertions. This example allows for the insertion of one or more symbols between positions 2
and 3 in the pattern. (b) Adding an arc between every pair of sequences allows for deletions,
but the number of transitions grows rapidly with the number of Match states. (c) In this
topology, the number of transitions grows linearly with the number of Match states.
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is that the number of transitions grows rapidly as the number of match states increases. To
infer the transition probabilities, we would need a very large set of training data, in which
all deletions of all possible sizes were represented. An alternative approach that requires
fewer parameters is to model long deletions as sequences of short ones, as seen in the HMM
in Fig. 5.12c.

Figure 5.13: A profile HMM of length 5

The canonical Profile HMM, shown in Fig. 5.13, combines these features. A Profile
HMM has a column containing a Match, an Insertion, and a Deletion state for each position
in the conserved pattern. States Mi, Ii, and Di correspond to the ith position in the pattern.
We refer to the number of Match states, not including the silent Start and End states, as
the length of a Profile HMM. A leading insertion state, I0, allows for patterns that occur in
the middle of a longer sequence. If the pattern ends before the end of the sequence, the
remaining sequence is emitted by the insertion state In, where n is the last position in the
pattern.

Note that in a Profile HMM there is a path from the Start state, M0, to the End state,
Mn+1, that passes only through Insertion and Deletion states. Thus, a Profile HMM can
emit a sequence that does not contain an instance of the pattern. Such a sequence would
have a low probability, compared with a sequence generated by the Match states.

Parameter estimation

The emission and transition probabilities of a Profile HMM must be estimated from data.
If the sequences are aligned and the position of the motif in the alignment is known, then
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we have labeled training data. In other words, it is possible determine from the alignment
which state is associated with each symbol in each sequence. In that case, all we need to
do is determine the number of Match states in the Profile HMM, set up the topology, and
calculate the parameter values from the labeled data.

Given unlabeled sequences that are known to have a common pattern, we can use the
Profile HMM to discover the pattern using the Baum-Welch algorithm to infer the values
of the parameters. Once the parameters have been estimated, we use the Profile HMM to
label the data. Finally, we construct a multiple sequence alignment by planning symbols
with the same label in the same column of the alignment. We give an example of each case
below.

Constructing a profile HMM for a variable length motif with labeled data:
Profile HMMs, like the one show in Fig. 5.13, can be used to model variable length motifs.
We illustrate this process with this example:

VG--H

V---N

VE--D

IAADN

The length of the Profile HMM should correspond to the typical length of the motif. A
rule of thumb is to use the average of the length of the training sequences. The lengths of
the above sequences are 3, 2, 3, and 5 (before the gaps were inserted), respectively, yielding
an average length of 3.25. This suggests that a Profile HMM of length 3 is appropriate
for modeling this pattern. Our HMM will have a silent Start state M0, Match states
M1,M2,M3, Insertion states, I0, I1, I2, I3, Deletion states, D1, D2, D3, and a silent End
state, M4.

The Insertion and Match states emit the 20 amino acids (for protein motifs), or the
four nucleotides (for DNA and RNA motifs). Deletion states emit the indel symbol, e.g.
“−”. For our Profile HMM, the emission probabilities of the Insertion and Deletion states
might look like this:

eDj (σ) = 0, eDj (−) = 1

eIj (σ) = p(σ), ∀Ij

where p(σ) is the background probability of residue σ. In order to estimate the parameters
for the Match states, we assign labels to the data using the multiple alignment as a guide.
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Columns in the alignment that have gaps in less than half of the rows correspond to Match
states. Those with more gaps in than half of the rows correspond to Insertion states:

V G - - H
V - - - N
V E - - D
I A A D N
M1 M2 I2 I2 M3

This yields the following labeled sequences:
V G H
M1 M2 M3

V H
M1 D2 M3

V E D
M1 M2 M3

I A A D N
M1 M2 I2 I2 M3

Note that when a gap (‘ ’) appears in a Match column (Mi), it is labeled as a deletion (Di).
For example, the first gap in the second sequence is labeled Di.

From these labeled sequences, we can estimate the emission and transition probabilities
from Equations 5.6 and 5.7. For example, using b = 1 as a pseudocount, we obtain

eM1(V ) =
3 + 1

4 + 20
.

Similarly, the probability of a transition from M2 to I2 is

aM2I2 =
1 + 1

(2 + 1) + (1 + 1) + (0 + 1)
.

The three sums in parentheses in the denominator correspond to all possible transitions
out of state M2. The first term in each sum in the number of transitions observed in the
training data; the second term is a pseudocount. In the training sequences in our example,
there are two transitions from M2 to M3, one transition from M2 to I2 and no transitions
from M2 to D3. The other emission and transition probabilities are calculated the same
way. The model always starts in M0, so πMj = 0, when j>0.
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Modeling unlabeled data with a Profile HMM: To discover a pattern in unlabeled
data requires the following steps:

1. Estimating the length: Given a set of unaligned sequences, where each sequence
is an instance of the pattern, we set the length of the HMM (i.e., the number of
non-silent Match states) to L, where L is the average sequence length. An example of
this type of input would be sequences approximately 50 residues long, where each
sequence corresponds to an instance of the Ig domain.
Alternatively, we might be given sequences that contain a pattern, but are much
longer than the pattern. In this case, we must rely on biological knowledge to obtain
an initial estimate of the pattern length. The initial estimate of the pattern length
can be adjusted later using model surgery (Step 6).
An example of this type of input would be a set of protein sequences, typically several
hundred residues in length, each of which contains an instance of an unknown domain.
In this case, you might estimate the length of the pattern to be approximately 100,
since that is the length of a typical protein domain.

2. The topology: Construct a Profile HMM with L+ 2 Match states, L+ 1 Insertion
states, and L Deletion states. M0 and ML+1 are silent states corresponding to the
Start state and the End state.

3. Parameter estimation: Guess “good” initial parameters (e.g., aMi Mj � aMi Ij

and aMi Mj � aMiDj ) and train the model using the Baum Welch algorithm.

4. Determining the motif: Use the Viterbi algorithm or posterior decoding to infer
the state path that emitted each sequence. The Viterbi recurrence can be greatly
simplified and expressed in terms of log odds for the special case of Profile HMMs
(Durbin, pp 108-110). The log odds formulation avoids underflow and reduces length
effects. This was not covered in class and you will not be tested on it. Note the
similarity to the dynamic programming algorithm for pairwise alignment.

5. Multiple Sequence Alignment: The most likely paths for each sequence obtained
from decoding can be used to obtain a multiple alignment of the input sequences. If
symbols Oct and Odu were emitted by the same Match state, then align position t in
sequence Oc with position u in sequence Od. See Ewens and Grant, p 337 - 339 for a
discussion and example of multiple sequence alignment using Profile HMMs.

6. Model surgery: The topology of the model can be iteratively refined. If more than
half of the sequences enter the Delete state, Dj , then remove Mj , Dj , and Ij from the
topology. If more than half of the sequences enter the Insertion state, Ij , then add
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Match, Insertion and Deletion states between positions j and j + 1.

7. Re-estimate the parameters: If the states change due to model surgery, the
parameters must be re-estimated. Label the multiple alignment with the new states
and calculate the transition and emission probabilities as described above for labeled
data. If the number of states that changed is a substantial fraction of the entire HMM,
then you may obtain better results by retraining with the Baum Welch algorithm.

Compared with the exact dynamic programming algorithm for multiple sequence align-
ment, which runs in exponential time, this approach can align many sequences quickly.

Pattern recognition with profile HMMs: Once you have constructed your Profile
HMM, how do you determine whether a new, unlabeled sequence, O, contains the motif?

If you have a model for a suitable null hypothesis, H0, you can obtain a log odds ratio,

log
P (O|HA)

P (O|H0)
,

using the Forward algorithm to determine the probability of the sequence for each model.
Typically, HA would be represented by a profile HMM and H0 by a background model such
as the one shown in Fig. 5.11. This gives a score, but does not infer the location of the
motif.

Alternatively, you can find the most likely path using the Viterbi algorithm or posterior
decoding. The location of the motif corresponds to the symbols emitted by the Match
states. If no symbols were emitted by Match states, then the motif is not present in O.
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