Chapter 3

Amino Acid Substitution Matrices

In prior lectures, we introduced Markov models of nucleotide substitution. We derived
expressions for the probability that nucleotide x will change to nucleotide y after elapsed
time t. Further, we used the model to account for multiple substitutions, by estimating the
number of actual substitutions that occurred, given the number of observed mismatches.

Here, we focus on Markov models of amino acid replacement and their use in deriving
amino acid substitution matrices. An amino acid substitution matrix assigns a score to a
pair of aligned amino acids, z and y. A good substitution matrix should have the following
properties:

e Fwolutionary divergence: The subsitution matrix should be appropriate for the degree
of evolutionary divergence of the proteins under consideration. The observation
of identical or functionally similar amino acids at the same site is more surprising
in highly diverged protein families than in families characterized by little sequence
divergence. The best results are obtained using a substitution matrix based on amino
acid replacement frequencies that are typical of the protein family. Therefore, a set of
matrices that is parameterized by sequence divergence is desired.

o Multiple substitutions: The score associated with an amino acid pair, z and y, should
reflect the probability of observing x aligned with y, taking into account the possibility
of multiple replacements at the same site.

e Biophysical properties of residues: Amino acids differ in size and charge. Some are
acidic, some are basic, some have aromatic side chains. Generally, replacement of an
amino acid with another amino acid with similar properties is less likely to break the
protein or cause dramatic changes in function than replacement with an amino acid
with different properties. A substitution matrix should reflect this.

There are several families of amino acid substitution matrices that have these properties.
Two that are widely used are the PAM matrices (Dayhoff et al., 1978) and the BLOSUM
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matrices (Henikoff and Henikoff, 1992.) Both of these families of substitution matrices
are parameterized by sequence divergence. The PAM matrices account for evolutionary
divergence using a formal Markov model of sequence evolution. The BLOSUM matrices
use an ad hoc approach. Although the details differ, both matrix families were derived
according to the following general strategy:

1. Use a “trusted” set of ungapped, multiple sequence alignments to infer model param-
eters.

2. Count observed amino acid pairs in the trusted alignments, correcting for sample bias.

Estimate substitution frequencies from amino acid pair counts.

4. Construct a log likelihood scoring matrix from substitution frequencies.

w

3.1 A log likelihood ratio framework for scoring alignments

Before introducing the PAM and BLOSUM matrices, we briefly introduce the log likelihood
framework in which these matrices were developed. Suppose o (s, s2) is an ungapped
alignment of sequences s; and so of length n. Under the assumption of positional inde-
pendence, we can assign a similarity score to a”(si, s2) by adding the similarities of the
symbols in each position in the alignment,

S=> p(silil, safi]), (3.1)
i=1

where p(z,y) is a quantitative measure of the similarity of 2 and y. Recall that earlier
in the semester, we used a simple scoring scheme with a single match score, p(z,z) = M,
Vz € X, and a single mismatch score, p(z,y) = m, Va,y € X such that  # y. Since all
matches (respectively, mismatches) have the same score, with this scoring scheme

S=m-m+(n—-m) M,

where m is the number of mismatches in .

This simple scoring scheme has limitations, especially for amino acids. First, since all
mismatches are assigned the same score, it cannot reflect differences in the biochemical
similarity of various amino acid pairs. Second, if M and m are chosen arbitrarily, then
alignment scores have no intuitive meaning in an absolute sense. For example, if I tell
you that a given alignment has a score of 14, you know that it is better than some other
alignment of the same sequences that has a score of 12, but you have no way of assessing
whether the alignment is inherently good or bad.

Third, this scoring scheme does not take the evolutionary divergence of s; and s» into
account. If we are testing the hypothesis that s; and so are related and have changed
very little since they diverged from their common ancestor, then we might interpret any
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mismatch as evidence that s; and s9 are unrelated, even if the mismatch is a conservative
replacement (i.e., involves amino acids with similar biochemical properties). In contrast,
if we are testing the hypothesis that s; and s are related and have changed a great deal
since their divergence, then we might interpret mismatches that represent conservative
replacements as evidence s; and s are indeed related. In order to capture these nuances,
we require a scoring method that is parametized by evolutionary divergence.

One way of assessing whether an alignment is good in an absolute sense is to ask whether
af(s1, s2) reflects more similarity than we expect to see by chance. Let Hy be the null
hypothesis that s; and sy are unrelated sequences. The alternate hypothesis, H 4, is that
s1 and so are related sequences with a given amount of evolutionary divergence. We can
assess whether o (s1, s2) reflects more than chance similarity by calculating the ratio of
the probabilities of the alignment under H4 and Hjy:

LR(a") = ?aﬂHA)

LAY (3.2)

This likelihood ratio will be less than one, if the alignment of s; and sy represents less
similarity than expected by chance, and greater than 1, if the alignment represesnts is more
similarity than expected by chance. If the ratio is much greater than 1, then we have strong
evidence that the sequences share common ancestry.

Under the assumption of positional independence, the probability of the alignment is
equivalent to the product of probabilities of the individual positions in the alignment

o {7 Pl
eren) =11 oy .

where a[i] is the alignment of s1[i] and s3[i]. This formulation provides a way to assess
alignments based on the probabilities of individual amino acid pairs in the alignment.
(Recall that o is an ungapped alignment.) However, it requires calculating the product of
a sequence of numbers between 0 and 1, with the concomitant challenge of working with
smaller and smaller numbers as the length of the alignment increases.

This problem can be addressed by calculating the log of the likelihood ratio, instead
of the likelihood ratio, itself. Note that since log(z) increases monotonically with x, the
alighment that maximizes LR (a"), also maximizes log LR (o). Thus, log LR(a") can also
be used to assess the extent to which a/(s1, s2) represents more than chance similarity.
Taking the log of both sides of Equation 3.3 yields

S = o T p(a”[i]| Ha)
log LR(af) = 1gi];[1p(a,{[i” i (3.4)
N py
= Zlog}w. (3.5)
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Since LR (") is non-negative, log LR (o) ranges from —oco to co. If log LR (o) > 0, then
a(s1, s2) reflects more than chance similarity than expected by chance; if log LR (o) > 0,
then o (s, s2), then a(s1, s2) reflects less similarity than expected.

The right hand side of this equation looks very similar to the right hand side of
Equation 3.1: in both cases, we have a sum of values, one for each position in the alignment.
In Equation 3.1, the i’" entry in the sum is measure of similarity of s1[i] and sy[i]; in
Equation 3.5, the i*" entry is the probability, relative to chance, of observing s;[i] aligned
with so[i]. This suggests that we can use the log likelihood ratios to define a scoring scheme.
By defining the similarity score of x aligned with y to be

p(*|Ha)
p(z,y) = log ———
() =108 )
we obtain an alignment score that is equivalent to the log of the ratio of the probabilities of
that alignment under the alternate and null hypotheses:

S =log LR(a").

This yields a scoring scheme that has a natural, biological interpretation, that can be
adjusted to account for evolutionary diverence, and that can be interpreted in an absolute,
as well as a relative, context.

To define similarity scores in this way, requires estimates of p(z |H,4) and p(i |Hp), for a
range of evolutionary distances. For amino acid substitution matrices, these quantities are
estimated from trusted amino acid alignments. In the following sections, we discuss amino
acid pair probabilities are estimated in derivation of the PAM matrices and the BLOSUM
matrices.

3.2 PAM matrices

In 1978, Margaret Dayhoff and her colleagues developed a family of substitution matrices
that are parameterized by PAM distance, a unit of evolutionary divergence. The term
“PAM?” is an abbreviation of “percent accepted mutation.” The divergence between two
sequences is N PAMs, if, on average, N amino acid replacements (possibly at the same site)
per 100 residues occurred since their separation. Note that this is distinct from percent
identit, which reflects the number of matches per 100 residues.

The derivation of these matrices requires estimating amino acid pair frequencies in
sequences that are diverged by N PAMs, for a range of values of N. Given alignments of
sequences that are separated by N PAMs, amino acid pair frequencies can be estimated
simply by tabulating the number of instances of each amino acid pair in those alignments.
However, it is not clear how to obtain such alignments, because determining the PAM
distance associated with a given alignment is not straightforward. The number of mismatches
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can easily be determined by inspection, but inferring the number of replacements that
occurred requires a method for estimating multiple replacements at the same site. To
address this problem, Dayhoff first constructed a model of amino acid replacement using
alignments with high levels of sequence similarity, in which multiple substitutions at the
same site are unlikely. She then used higher-order Markov models to obtain models of
amino acid replacements in more diverged sequences.

Dayhoff developed this model using the four step approach described above. Specifically:

1. As training data, Dayhoff et al used a set of ungapped, global multiple sequence alignments
of 71 groups of closely related sequences. Within each group, the sequence identity was
85% or greater. The rationale is that sequences with at least 85% identity will contain no
site that has sustained more than one mutation.

2. Observed amino acid pair frequencies were tabulated from the 71 multiple alignments.
Sample bias was corrected by counting the minimum number of changes required to fit the
data to a tree. This requires inferring the unrooted tree that describes the evolutionary
relationships between the sequences in each aligned family and then estimating the number
of amino acid replacements that occured on each branch of that tree.

We will demonstrate how this works in practice using the following alignment of four
amino acid sequnces of length four:

AEIR
DEIR
QKLH
AHLH

B W N =

For an alignment with four sequences, there are three unrooted trees with four leaves, shown
in Fig. 3.1. Tree I corresponds to the hypothesis that Sequence (1) is more closely related to
Sequence (2) than to either Sequence (3) or Sequence (4). According to Tree II, Sequence
(1) and Sequence (3) are most closely related, while Tree III says that Sequence (1) and
Sequence (4) are closest. For each tree, the leaves are annotated with the corresponding
present-day sequences. The sequences on internal nodes are unknown, since they correspond
to ancestral sequences.

First, we will illustrate how to estimate the number of substitutions, given the evo-
lutionary tree. Then, we will return to the question of how to infer the tree that best
explains a given alignment. Dayhoff inferred the sequences on the internal nodes according
to the parsimony criterion, which states that the best hypothesis is the one that requires
the fewest amino acid replacements to explain the data. Consistent with this criterion,
sequences were assigned to the internal nodes of each tree in such a way that the total
number of changes along branches of the tree is minimized.
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1 3 1
AEIR QKLH AEIR DEIR
DEIR AHLH QKLH AHLH
2 4 3
(1) (1)
1 AEIR DEIR 2
AHLH: :QKLH

(1)

Figure 3.1: Three unrooted trees representing the three possible hypotheses for evolution
of four sequences. The leaves of each tree is labeled with the corresponding present-day
sequences. The internal nodes are not labeled. The sequences associated with internal
nodes correspond to ancestral sequences and are unknown.

For example, suppose that we have determined that Tree I is the best hypothesis for the
evolutionary history of the four sequences in the alignment. Ancestral sequences that satisfy
the parsimony criterion for Tree I are shown Fig. 3.2. With these ancestral sequences, six
substitutions (shown on their respective branches) are required to explain the evolution of
the four present day sequences. Convince yourself that there is no assignment of labels to
the internal nodes that allows for fewer than six substitutions.

Once ancestral sequences have been inferred, the counts for each amino acid pair are
tabulated. A, the number of z,y pairs observed, is determined by by counting the number
of edges connecting = and y, for  # y. Note that A,, = A,;, since every edge connecting x
with y also connects y with z. A, is defined to be twice the number of edges connecting x
and z. This is because the edges connecting two dissimilar residues are also counted twice,
once in the xy direction and once in the yz direction. For example, there are 6 EE pairs
in Fig. 3.2: Two counts are contributed by each of the three edges connecting AEIR and
AEIR, AEIR and DEIR, and AEIR and AELH. The tabulated counts for all amino acid pairs
are given in the table in Fig. 3.3.

In general, there can be more than one way to assign sequences to internal nodes such
that the total change is minimized. Each most parsimonious set of internal node labels
will result in different amino acid pair counts. In our example, there are two additional
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Figure 3.2: Tree I from Fig. 3.1 with ancestral sequences inferred according to the parsimony
criterion. The associated amino acid replacements are shown on the branches of the tree.
Six replacements are required to explain the present day sequences. This set of most
parsimonous ancestral sequences is not unique. There are two other most parsimonious
hypotheses for the ancestral sequences, shown in Fig. 3.4.

assignments of ancestral sequences for which six substitutions are sufficient to explain the
present-day sequences, shown in Fig. 3.4. The pair counts resulting from these two alternate
sets of labels are given in the tables in Fig. 3.5. Since there is no way of knowing which
set of inferred ancestral sequences is the best estimate, all possibilities must be considered.
Dayhoff does this by averaging the counts over all most parsimonious labelings. For our
example, Fig. 3.6 shows the average of the pair counts in Figs. 3.3 and 3.5.

Comparison of the original multiple alignment with the pair counts derived from the
trees in Figs. 3.2 and 3.4 demonstrates how this approach compensates for sample bias and
leads to different amino acid pair statistics. If we derived amino acid pairs directly from the

ADEHTIEKTLQR
Al |1 1
D|1

E 6|1 1

H 14 1
I 4 1

K 1

L 1 4
o1

R 1 4

Figure 3.3: Amino acid pair counts derived according to Dayhoff’s counting scheme from
the tree in Fig. 3.2. Only amino acids that are present in at least one sequence are shown
in the table.
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AETR A-0O oKLH AETR A-Q oKLH

DEIR AHLH DEIR K-H ppLmy

Figure 3.4: Two other sets of most parsimmonious ancestral sequences for Tree I from
Fig. 3.1. The associated amino acid replacements are shown on the branches of the tree.

alignment, each sequence would be compared to three other sequences, effectively counting
the replacement of the same amino acid more than once. In contrast, when counting amino
acid pairs on a tree, each sequence is compared to one other sequence, i.e., the inferred
ancestral sequence. For example, since D and Q both appear in the first column of the
alignment, obtaining amino acid pair counts directly from the alignment would result in
a non-zero value of Apg. However, no D-Q replacement appears on the branches of the
labeled trees in Figs. 3.2 and 3.4 and Apg = 0 in the table in Fig. 3.5.

Having demonstrated how to infer ancestral sequences for a given evolutionary tree, we
return to the question of how to infer the tree that is the best hypothesis for the aligned
sequences. Dayhoff also used the parsimony principle to select the tree. For a given tree,
the minimum number of changes required to explain the present day sequences, over all
possible internal labelings, is called the parsimony score of that tree. Tree I has a parsimony
score of 6, for example. Given an alignment of a family of k sequences, all unrooted trees

ADEHTEKTOQR ADEHTEKTLOR
A|6|1 1 A6 1 1
D|1 D(1

E 4|1 E 4 1

H 16 1 1 H 4 1 1
I 4 1 I 4 1

K 1 K 111 2

L 1 4 L 1 4
Q|1 Q|1

R 1 4 R 1 4

Figure 3.5: Amino acid pair counts derived according to Dayhoff’s counting scheme from
the trees in Fig. 3.4.
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A D EH I KL @R
Al6 |1 1
D1
E 471 0.7
H 1 47 0.7 1
| 4 1
K 0.7/0.7 0.7
L 1 4
Q1
R 1 4

Figure 3.6: Average amino acid pair counts. FEach entry represents the mean of the
corresponding entries in the tables in Figs. 3.3 and 3.5.

with k sequences were considered and the parsimony score was estimated for each tree. In
general, there can be more than one most parsimonious tree for a given set of pressent-day
sequences, although for our example there is only one. (Convince yourself that for Trees 11
and III, it is not possible to assign sequences to the internal nodes that require six or fewer
replacements.) Having found the set of most parsimonious trees, Dayhoff estimated amino
acid pair frequencies by averaging the counts over all most parsimonious labelings of all
most parsimonious trees, yielding

1 T
T

where np is the number of labeled trees with an optimal parsimony score and T is an
indicator variable that enumerates such trees.

3. To estimate substitution frequencies from amino acid pair counts, Dayhoff constructed a
family of Markov models representing evolution at a single site, ¢, in an amino acid sequence
(Note that this model assumes site independence.) All models in the family have twenty
states, one for each amino acid. If the model visits state z at time ¢, we say that the
amino acid at site ¢ was an x at time ¢. The models differ in their transmission probability
matrices, which reflect the propensity for amino acid replacement at various evolutionary
divergences.

Dayhoff derived Pa%), transition matrix for the 1 PAM model, from closely related

alignments that may be assumed to contain no multiple substitutions. P;g,) is the probability
that amino acid = will be replaced by amino acid y in sequences separated by 1 PAM
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of evolutionary distance. Next, Dayhoff derived the PAM-N transition matrix, ng ) , by
extrapolating from the PAM-1 transition probability, as described in detail below: .
(1)

The transition matrix Py’ is derived from the counts, A,,, obtained in step 2, as follows:

Az
P = ﬁyh TFY (3.6)
h#x »T
PY = 1-m, (3.7)

Here, m,, is the “mutability” of amino acid x and is defined to be

Z Ay, (3.8)

where p, is the background frequency of x, L is the length of the alignment, and z is a
scaling that guarantees that the transition matrix will correspond to exactly 1 PAM. We
select the scaling factor, z, so that

x

pr

20 1
;(pmmm) ~ 100 (3'9>
This scaling factor is required because although the training alignments are sufficiently
conserved to contain no multiple substitutions, but the frequency of replacements in each
alignment may not be exactly one in a hundred.
We obtain an expression for the scaling factor, z, by substituting the right hand side of
Equation 3.8 for m, in equation (3.9) and solving for z. This yields

_ 10 Z D A (3.10)

=1 l#x

We now replace the z in Equation 3.8 with the right hand side of Equation 3.10 to obtain
the mutability of z,

0.01  Xize Aul
my = .
’ Px Doy Zl;ﬁh Ani

Substituting the expression for m, into the right hand side of Equation 3.6, we obtain the
PAMI1 transition probability

0.01 Agy
Pz Xp Zl;«éh A’
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Note that Pé;) in Equation 3.6 is consistent with the definition of a Markov chain: the
rows of the transition matrix sum to 1 and it is history independent. This Markov chain is
finite, aperiodic and irreducible (“connected”). Therefore, it has a stationary distribution.

We now derive the PAM-2 transition matrix. Note that the residue at site ¢ can change
from z to y in two time steps via several state paths: *+ >z — y, z >y —> y,orz — [ — y,
where [ is a third amino acid, not equal to x or y. Recall that the probability of changing
from z to y in two time steps is

PY = Z )P

P® can be derived by squaring the matrix P() by matrix multiplication. This is the
transition probability of a second order Markov chain that models amino acid replacements
that occur in two time steps. Similarly, we can use matrix multiplication to derive the
PAM-N transition matrix for any N > 2 as follows:

p) _ ( p(l))N

4. We obtain a log likelihood scoring matrix from the transition probability matrix as
follows. Let qég) = me;gJV ) be the probability that we see amino acid x aligned with amino
acid y at a given position in an alignment of sequences with N PAMSs of divergence; i.e.,
that amino acid x has been replaced by amino acid y after N PAMSs of mutational change.

Then, we define the PAM-N scoring matrix to be

q(N )
SN,y = Aog =~ (3.11)

DPxPy

pw)
= Alog %, (3.12)

Dy
where )\ is a constant chosen to scale the matrix to a convenient range. Typically A = 10
and the entries of S™ are rounded to the nearest integer. Note that Equation 3.12 is a
log likelihood ratio, where q;(vg) is the probability of seeing x and y aligned under the
alternate hypothesis that x and y share common ancestry with divergence N and p,p, is

the probability that = and y are aligned by chance.

It is easy to verify that the PAM-N transition matrix is not symmetric; that is,

# Py(iv ). This makes sense since replacing amino acid z with amino acid y may have
different consequences than replacing y with x. In contrast, the substitution matrix s
symmetric; that is, SV [z,y] = SV[y,z]. This makes sense because in an alignment, we
cannot determine direction of evolution, so we assign the same score when x is aligned with
y, and when y is aligned with x.
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3.3 BLOSUM Matrices

The BLOSUM (BLOck SUbstitution Matrices) matrices were derived by Steven and Jorja
Henikoff in 1992 !. They were based on a much larger data set than the PAM matrices, and
used conserved local alignments or “blocks,” rather than global alignments of very closely
related sequences. The “trusted” alignments used to construct the BLOSUM matrices
consisted of roughly 2000 blocks of conserved regions representing 500+ groups of proteins.

Here, we discuss the procedure for constructing a substitution matrix in the BLOSUM
framework from a single aligned block. In reality, the BLOSUM matrices were constructed
from many blocks. See Ewens and Grant, Section 6.5.2, for a detailed treatment of the
BLOSUM matrices, including a discussion of how pair frequencies from multiple blocks are
combined. Their treatment includes a worked example with more than one block. Note
that their notation is somewhat different from the notation we use in class.

BLOSUM matrix construction uses clustering rather than an explicit evolutionary model,
to account for different degrees of sequence divergence. Clustering with different values
of N, ranging from 45% to 90%, produces a parameterized set of matrices representing
different degrees of sequence divergence. In order to construct a BLOSUM-N matrix, the
sequences in each block are first grouped into clusters, such that the percent identity of
any pair of sequences from different clusters is less than N. Next, for every pair of clusters,
amino acids pairs consisting of one amino acid from each cluster are tabulated. Pairs of
amino acids within the same cluster are ignored. Amino acid pair counts are normalized by
cluster size so that all clusters contribute equally to the pair statistics.

The clustering step in BLOSUM matrix construction has two purposes: parameterizing
evolutionary divergence and accounting for sample bias. First, since only amino acids
pairs sampled from two different clusters are tabulated, the data used to construct the
matrix consists of amino acid pairs observed in sequences with a particular divergence
(i.e., sequences that are less than N identical). Second, to control for sample bias, the
contribution of each residue in a cluster is normalized by the number of sequences in
that cluster. As a result, each cluster contributes the same amount of information to
the estimation of amino acid pair frequencies, even though clusters may contain different
numbers of sequences.

The specific procedure for BLOSUM matrix construction is as follows:

Partitioning sequences into clusters with N % identity: The clustering step takes as
input a block of & sequences of length L (no gaps) and generates C' non-overlapping clusters.
The ith cluster, C;, has k; sequences of length L, where k = > k;. The sequences in the
block are partitioned in such a way that every sequence in a cluster is at least N% identical
to at least one other sequence in the cluster.

L Amino acid substitution matrices from protein blocks, PNAS, 1992 Nov 15;89(22):10915-9
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One way to obtain such a clustering is to represent the block as a weighted graph, where
the nodes correspond to sequences. The nodes for each pair of sequences are connected
by an edge that is weighted by their percent identity. To obtain clusters with an N%
identity threshold, all edges with weights lower than N% are removed, resulting in one
or more connected components. Each connected component corresponds to a cluster. If
N is greater than the greatest edge weight, then each cluster will contain a single se-
quence. If N is smaller than the lowest edge weight, then all sequences will be in a single
cluster. If this happens, it is not possible to construct a BLOSUM matrix for this value of V.

Amino acid pair counts: Following the clustering step, the observed frequency of amino
acid x aligned with amino acid y is calculated as follows. For each pair of clusters, C; and
C;, we determine the number of x,y and y, x pairs, where x and y are in the same column,
but in different clusters. Let N;(C;, z) be the number of times that residue x appears in
the I column of cluster C;. Then, the total number of pairs in column / involving an x in
one cluster and a y in the other cluster is

Ni(Ci, z) - Ni(Cj,y) + Ni(Ci,y) - Ni(C, ).

However, each of the clusters contributes only one count per column, so we must down
weight the number of pairs by the product of the size of the clusters. Suppose clusters C;
and C contain k; and k; sequences, respectively. Then, the contribution of column [ in
clusters C; and Cj to the pair count for x and y is

Ni(Cs,x) - Ni(Cj,y) + Ni(Ci, ) - Ni(Cj, )
ki K '

To obtain the total x,y pair count from this block, we sum over all pairs of clusters and
over all columns, yielding
C C
Z Z Z Nl(Ciw'U) : Nl(Cyﬁy) + Nl(Cz‘,y) : Nl(CjafE)
ki - kj ’

(3.13)
i=1 j=i+1 I=1

where x # y. We use the superscript N to indicate that these are pair counts for a
BLOSUM-N matrix, where N is the threshold used in the clustering. When z = y, the
pairs are only counted in one direction:

ZZZ N, Cz,x NZ<C],$) (3.14)

i=1 j>i I=1

Estimating substitution frequencies: The frequencies of amino acid pairs are derived
from the pair counts by normalizing by the total number of possible pairs; that is, by the
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product of the number of sites in the block and the number of pairs of clusters:

A
NG

FEstimating the expected pair frequencies: The expected frequency of x aligned with
y is the product of the background probabilities of observing = and y independently. In
PAM matrix construction, the background frequency of an amino acid is assumed to be the
frequency of that amino acid in typical proteins, for example, as tabulated by Robinson
and Robinson?. In contrast, in BLOSUM matrix construction, the expected frequencies are
estimated from the BLOCK data and adjusted for the current value of V.

In order to get the expected frequency of x aligned with y, we first estimate the frequencies
of the individual residues in the current block, again using the clusters to correct for sample
bias. As above, the counts from each cluster are “discounted” by a factor of 1/k;, and then
normalized by the total number of elements, L - C, to obtain the amino acid background
frequency:

1 N(C;,
o= pey et

=1 [=1

The expected pair frequencies are then obtained from the products of the background
frequencies:

Ea:y = PPy T PyPx
Ea::v = pi-

Finally, the BLOSUM-N log likelihood scoring matriz is calculated from the ratios of
the observed and expected frequencies:

N

Qx
SN[z, y] = 21o L
[, 9] g2 Eay

3.4 Comparing PAM and BLOSUM Matrices

We began this endeavor with the goal of deriving substitution matrices that are parameterized
by evolutionary divergence. In other words, a given alignment should be scored with a matrix

2 Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins,
PNAS, 1991 Oct;88:8880-4
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PAM BLOSUM
Evolutionary model Explicit evolutionary model None
Data Full length MSAs Conserved blocks
Bias correction Trees Clustering
Multiple substitutions Markov model: PN = (PH)N Implicitly represented in data
Evolutionary distance Markov model: PN = (P1)N Clustering
Matricos Transition & log likelihood scoring matri- Log likelihood scoring matrix only
ces
Parameter N Distance increases with N Distance decreases with N
Biophysical properties Derived indirectly from data Derived indirectly from data

Table 3.1: Properties of the PAM and BLOSUM matrices.

with scores that are appropriate for the evolutionary divergence of the sequences being
compared. In addition, these scores should implicitly account for multiple substitutions per
site, consistent with the typical evolutionary divergence associated with each matrix in the
family. A further goal is that the matrices should reflect the biophysical properties of amino
acids. The scores for amino acid pairs with similar biophysical properties (i.e., conservative
replacements) should be greater than scores for amino acid pairs with divergent biophysical
properties (i.e., non-conservative or radical replacements).

The PAM and BLOSUM matrices were both constructed in an explicit log-likelihood
framework, with entries of the form

N

SN[z, y] = clogs L

DPzPy

where the numerator, qg]c\;, is the frequency of the amino acid pair (z,y) in alignments of
related sequences with divergence N and the denominator, p,p,, is the frequency with
which the pair (z,y) will occur if amino acids are sampled according to their background
frequencies. The constant c is a scaling factor chosen for convenience. Multiplying every
entry in the matrix by a constant changes the value of the entries in an absolute sense, but
does not change the ratio between any two entries of the matrix. As a result, the constant
does not change the extent to which one amino acid pair is preferred over another. Scaling a
matrix with a constant, ¢, can be used to obtain scores in a convenient range, e.g. between
1 and 20.

Although the PAM and BLOSUM matrices have the general log-likelihood framework
in common, they differ in many aspects of their construction, as summarized in Table 3.1.
In both cases, the frequencies of amino acid pairs, qg]c\;, were estimated from amino acid pair
counts in “trusted” alignments, but these trusted alignments are different in nature. In
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contrast to the PAM alignments, the BLOSUM matrices are based on locally conserved
regions (ungapped blocks) in multiple alignments of sequences that were not highly conserved
along their entire length. The PAM matrices were constructed from full length alignments of
closely related sequences with at least 85% identity. These sequences are assumed to contain
no site at which more than one substitution has occurred. The trusted alignments used
to construct the BLOSUM matrices consisted of roughly 2000 blocks of conserved regions
representing 500+ groups of proteins. In other words, some protein families contribute
more than one block.

Both matrix families are parameterized by sequence divergence, but this is achieved
using very different methods. The PAM matrices are based on a Markov chain that
models amino acid replacement explicitly. The use of a Markov model allowed Dayhoff and
her colleagues to address several challenges in matrix construction. A PAM-1 transition
matrix is constructed from amino acid pair counts obtained from the trusted alignments.
The effect of sample bias on these pair frequencies was mitigated by counting changes
on the branches of maximum parsimony trees. Dayhoff accounted for both evolutionary
divergence and multiple substitutions by deriving higher order Markov chains from the
PAM-1 transition matrix. With PAM matrices, the divergence parameter increases with
evolutionary divergence. A rough equivalence between PAMs and percent identity can be
determined through simulations, as shown in Table 3.2.

The BLOSUM matrices have no underlying mathematical model. In BLOSUM matrix
construction, clustering is used to address sample bias and to obtain different degrees of
divergence. Sequences with at least N% identity are placed in the same cluster. Amino
acid pairs are only counted across clusters, not within clusters. In contrast to the PAM
matrices, the BLOSUM divergence parameter decreases as evolutionary divergence increases.
BLOSUM matrices can also be roughly calibrated by percent identity using empirical
methods, providing an approximate mapping between the PAM divergence scale and the
BLOSUM divergence scale (Table 3.2).

Neither matrix family explicitly considers biophysical properties. The PAM and BLO-
SUM matrices are constructed from aligned sequences that are conserved because the amino
acids in each column are under selective constraints. Nevertheless, the matrices favor amino
acid pairs that share biochemical properties. Inspection of the BLOSUMG62 matrix, for
example, shows that alignments of residues in the same biochemical group tend to have
positive log likelihood scores. These residues are more likely to be observed together in
alignments of related sequences than by chance. Residues from different biochemical groups
tend to have negative scores. These residues are less likely to be observed together in related
sequences than in chance alignments. A score of zero means that this pair of residues is
equally likely in related and chance alignments.
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3.4 Comparing PAM and BLOSUM Matrices

Sequence identity | PAM | BLOSUM

83% 20 -

i 30 -
63% 60 -

i} 70 _
43% 100 90
38% 120 80
30% 160 60
25% 200 50
20% 250 45

Table 3.2: Correspondance between percent identity and the divergence of PAM and
BLOSUM matrices.
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