Lecture 15: Implementing a Symbolic Model Checker

- Representing Transition Relations
- Implementing Basic CTL Operators
- Fairness Constraints
- Buchi Automata
- Omega Regular Languages
- Checking Language Containment

How To Build a CTL Model Checker

The following papers describe how to build a Symbolic Model Checker including fairness constraints:

- J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 10²⁰ states and beyond. *Information and Computation*, 98(2):pages 142–170, 1992.
- J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model checking for sequential circuit verification. *IEEE Transactions on Computer-Aided Design of Integrated Circuits*, 13(4):401–424, 1994.

Representing Transition Relations

How to represent state-transition graphs with *Ordered Binary Decision Diagrams*:

Assume that system behavior is determined by n boolean state variables v_1, v_2, \ldots, v_n .

The Transition relation N will be given as a boolean formula in terms of the state variables:

$$N(v_1,\ldots,v_n,v_1',\ldots,v_n')$$

where $v_1, \ldots v_n$ represents the current state and v'_1, \ldots, v'_n represents the next state.

Now convert N to a OBDD!!

Symbolic Model Checking

Check takes a CTL formula as its argument and returns the OBDD for the set of states that satisfy the formula:

If f is an atomic proposition v_i , then Check(f) is simply the OBDD for v_i .

Formulas of the form $f \lor g$ and $\neg f$ are handled using the standard OBDD algorithms for these connectives.

 $\mathbf{EX} f$, $\mathbf{E}[f \ \mathbf{U} \ g]$, and $\mathbf{EG} f$ are handled by auxiliary procedures:

```
\begin{split} Check(\mathbf{EX}\,f) &= CheckEX(Check(f)) \\ Check(\mathbf{E}[f\;\mathbf{U}\,g]) &= CheckEU(Check(f),Check(g)) \\ Check(\mathbf{EG}\,f) &= CheckEG(Check(f)) \end{split}
```

 $\mathbf{AX} f$, $\mathbf{A}[f \mathbf{U} g]$ and $\mathbf{AG} f$ are rewritten in terms of above operators.

Symbolic Model Checking (Cont.)

CheckEX is simple since **EX** f is true in a state if it has a successor in which f is true.

$$CheckEX(f(\bar{v})) = \exists \bar{v}' \left[f(\bar{v}') \land R(\bar{v}, \bar{v}') \right].$$

Given OBDDs for f and R, the OBDD for

$$\exists \bar{v}' [f(\bar{v}') \land R(\bar{v}, \bar{v}')].$$

is computed as described in the first lecture.

Symbolic Model Checking (Cont.)

 $CheckEU(f(\bar{v}),g(\bar{v}))$ is given by

Ifp
$$Z(\bar{v}) \left[g(\bar{v}) \vee \left(f(\bar{v}) \wedge CheckEX(Z(\bar{v})) \right) \right].$$

The function Lfp is used to compute the sequence of approximations Z_0, Z_1, \ldots

This sequence converges to $\mathbf{E}[f \ \mathbf{U} \ g]$ in a finite number of steps.

The OBDD for Z_{i+1} is computed from the OBDDs for f, g, and Z_i .

Since OBDDs are a canonical form for boolean functions, convergence is easy to detect.

When $Z_i = Z_{i+1}$, Lfp terminates. The state set for $\mathbf{E}[f \ \mathbf{U} \ g]$ is given by the OBDD for Z_i .

Symbolic Model Checking (Cont.)

CheckEG is similar. In this case, the procedure is based on the greatest fixpoint characterization for the CTL operator **EG**:

$$CheckEG(f(\bar{v})) = \mathbf{gfp} \, Z(\bar{v}) \, \left[f(\bar{v}) \wedge CheckEX(Z(\bar{v})) \right]$$

Given the OBDD for f, the function Gfp is used to compute the OBDD for **EG** f.

CTL with Fairness Constraints

A fairness constraint can be an arbitrary formula of CTL.

Let $H = \{h_1, \ldots, h_n\}$ be a set of such fairness constraints.

A path p is fair with respect to H if each $h_i \in H$ holds infinitely often on p.

The path quantifiers in CTL formulas are restricted to fair paths.

EG with Fairness Constraints

Consider the formula $\mathbf{EG} f$ with the set of fairness constraints H.

This formula will be true at a state s if there is a path p starting at s such that

- \bullet f holds globally on p, and
- \bullet each formula in H holds infinitely often on p.

The operator EG (Cont.)

Let S be the largest set of states with the following two properties:

- 1. all of the states in S satisfy f, and
- 2. for all fairness constraints $h_k \in H$ and all states $s \in S$
 - ullet there is a non-empty sequence of states from s to a state in S satisfying h_k , and
 - \bullet all states in the sequence satisfy the formula f.

It can be shown that each state in S is the beginning of a path on which f is always true.

Furthermore, every formula in H holds infinitely often on this path.

The operator EG (Cont.)

It follows that $\mathbf{EG} f$ can be expressed as a greatest fixed point of a predicate transformer:

$$\mathbf{EG} f = \mathbf{gfp} S \left[f \wedge \bigwedge_{k=1}^{n} \mathbf{EX} (\mathbf{E}[f \mathbf{U} S \wedge h_k]) \right]$$

This formula can be used to compute the set of states that satisfy $\mathbf{EG} f$.

Other Operators

Checking the formulas $\mathbf{EX} f$ and $\mathbf{E}[f \mathbf{U} g]$ under fairness constraints is simpler.

The set of all states which are the start of some fair computation is

$$fair = \mathbf{EG} true.$$

Hence,

$$\mathbf{EX}(f) = \mathbf{EX}(f \wedge fair),$$

$$\mathbf{E}[f \mathbf{U} g] = \mathbf{E}[f \mathbf{U} g \wedge fair]$$

Remaining CTL operators can be expressed in terms of EX, EG, and EU. For example,

$$\mathbf{A}[f \mathbf{U} g] \equiv \neg \mathbf{E}[\neg g \mathbf{U} \neg f \wedge \neg g] \wedge \neg \mathbf{EG} \neg g$$

ω -automata

There are many types of ω -automata. However, we will only consider deterministic Büchi automata.

A finite *Büchi automaton* is a 5-tuple

$$M = \langle K, p_0, \Sigma, \Delta, A \rangle,$$

where

- *K* is a finite set of *states*
- $p_0 \in K$ is the *initial state*
- Σ is a finite *alphabet*
- $\Delta \subseteq K \times \Sigma \times K$ is the transition relation
- $A \subseteq K$ is the acceptance set.

M is deterministic if for all $p, q_1, q_2 \in K$ and $\sigma \in \Sigma$, if $\langle p, \sigma, q_1 \rangle, \langle p, \sigma, q_2 \rangle \in \Delta$ then $q_1 = q_2$.

Language Acceptance

An infinite sequence of states $p_0p_1p_2... \in K^{\omega}$ is a *path* in M if there exists an infinite sequence $a_0a_1a_2... \in \Sigma^{\omega}$ such that $\forall i \geq 0 : \langle s_i, a_i, s_{i+1} \rangle \in \Delta$.

Let $p = p_0 p_1 p_2 \ldots \in K^{\omega}$ be a path in M. The *infinitary set* of p is the set of states that occur infintely often on p.

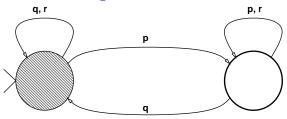
A sequence $a_0a_1a_2\ldots\in\Sigma^\omega$ is accepted by M if there is a corresponding path $p=p_0p_1p_2\ldots\in K^\omega$ such that the infinitary set of p contains at least one element of A.

The set of sequences accepted by an automaton M is called the *language of M* and is denoted $\mathcal{L}(M)$.

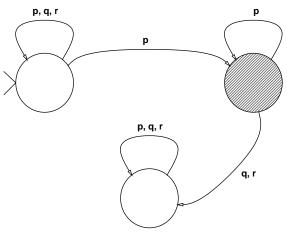
Büchi Automata Examples

The alphabet for these examples is the set $\Sigma = \{p, q, r\}$. States in the acceptance set are shaded.

• This automaton accepts infinite length strings with the property that every occurrence of p is eventually followed by an occurrence of q.



• This automaton accepts infinite length strings with the property that p occurs almost always in the string.



Product Construction

Let M and M' be two Büchi automata over the same alphabet Σ .

Consider the Kripke structure

$$\mathcal{K}(M, M') = (AP, K \times K', \langle p_0, p_0' \rangle, L, R),$$

where

- $AP = \{q, q'\}$ is the set of atomic propositions
- $\langle s, s' \rangle \models q \text{ iff } s \in A$
- $\langle s, s' \rangle \models q' \text{ iff } s' \in A'$
- $\langle s, s' \rangle R \langle r, r' \rangle$ iff $\exists a \in \Sigma : \langle s, a, r \rangle \in \Delta$ and $\langle s', a, r \rangle \in \Delta'$.

Checking Containment

It is possible to show that, if M' is deterministic,

$$\mathcal{L}(M) \subseteq \mathcal{L}(M') \Leftrightarrow K(M, M') \models \mathbf{A}[\varphi q \Rightarrow \varphi q']$$

The above formula is in CTL* but not in CTL. However, it belongs to a class of formulas which can be checked in polynomial time.

In fact, $\mathbf{A}[\varphi q \Rightarrow \varphi q']$ is equivalent to $\mathbf{AG} \mathbf{AF} q'$ under the fairness constraint "infinitely often q".

Checking this formula with the given fairness constraint can be handled by the technique described previously.