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Week 5 – Music 
Generation and 
Algorithmic Composition 

Roger B. Dannenberg 
Professor of Computer Science and Art 
Carnegie Mellon University 

Overview 

n Short Review of Probability Theory 
n Markov Models 
n Grammars 
n Patterns 
n Template-Based Music 
n Suffix Trees 
n Data Compression and Music Generation 
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Probability 

n Automatic Music Generation/Composition 
often uses probabilities 

n Usual question: what's the most likely thing to 
do? 

n P(x) is the "probability of x" 
n P(x|y) is the "probability of x given y" 
n Example: given the previous pitch in a 

melody, what is the probability of the next 
one? 
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Markov Chains 

n  One of the most basic sequence models 
n  Markov Chain has: 

n  Finite set of states 
n  A designated start state 
n  Transitions between states 
n  Probability function for transitions 

n  Probability of the next state depends only upon the 
current state (1st-order Markov Chain) 

n  Can be extended to higher orders by considering 
previous N states in the next state probability. 
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Markov Chain as a Graph 

n  Note that the sum of the 
outgoing transition 
probabilities is 1. 

5 

start 
P=1 

P=0.3 P=0.7 
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output a 

output b 

Nth-Order Markov Chain 

n Next state depends on previous N states, but 
you can always build an equivalent 1st-order 
Markov Chain with mn states. 

 
n P(a|aa) = 0.5, P(b|aa) = 0.5 
n P(b|ab) = 1  
n P(a|ba) = 1 
n P(a|bb) = 0.5, P(b|bb) = 0.5 
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aa ab 

ba bb 

Equivalent to: 
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Estimating Probabilities 

n  If a process obeys the Markov properties (or even if it 
doesn’t), you can easily estimate transition 
probabilities from sample data. 

n  The more data, the better (law of large numbers) 
n  Let  

n  nA = no. of transitions observed from state A 
n  nAB = transitions from state A to state B 

n  Then 
n  P(B|A) = estimated probability of a transition from state 

A to state B = nAB/ nA 
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The Last Note Problem 

n  Observations are always finite sequences 
n  There must always be a “last” state 
n  The last state may have no successor states (nlast_state = 0) 
n  So P(B|A) = 0/0 = ? 
n  Solutions: 

n  Initialize all counts to 1 (in the absence of any observation, 
all transition probabilities are equal), OR… 

n  If there are no Nth-order counts, use (N-1)th-order counts, 
e.g. estimate P(B|A) ≈ P(B) = nB/n, where n is total number 
of observations, OR… 

n  Pretend the successor state of the last state is the first state 
-- now every state leads to at least one other. 
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Markov Algorithms for Music 

n Some possible states 
n  Pitch 
n  Pitch Class 
n  Pitch Interval 
n  Duration 
n  (pitch, duration) pairs 
n  Chord types (Cmaj, Dmin, …) 
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Some Examples 

n Training Data 1:  
n  1st Order Markov Model Output: 

n Training Data 2: 
n  1st Order Markov Model Output:   
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Mathematical Systems 

n Sierpinski’s Triangle 

n  Music: start with one note. Divide into 3 parts, divide each part 
into 3 parts, …. On each division into 3 parts, transpose the 
pitch by 3 different values. Keep the original pitch as well, so we 
have one long note and 3 short ones (each of which has 3 
shorter notes, etc.) 
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Mapping Natural Phenomena to 
Music 
n  Example: map image pixels to music 

n  Sudden change in “red” -> start a note 
n  Pitch comes from “blue” 
n  Loudness comes from “green” 

n  Repetitive structure because adjacent scan lines are 
similar 

Chromatic 

Diatonic 

Microtonal 
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David Temperley's Probabilistic 
Melody Model 
n  There are several probability distributions that might govern 

melodic construction: 
n  The voice has limited range: central pitches are more likely: 

n  Large intervals are difficult and not so common, so we have 
an interval distribution: 

n  Different scale steps have different probabilities: 

n  We can combine these probabilities by multiplication to get 
relative probabilities of the next note 

n  Distributions can be estimated from data. 

Pitch 
Prob. 

Interval 
Prob. 

Prob. 
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Grammars for Music Generation 

n Reference: Curtis Roads, The Computer 
Music Tutorial 

n Formal Grammar Review 
n  Set of tokens 
n  The null token Ø 
n  Vocabulary V = tokens U Ø 
n  Token is either terminal or non-terminal 
n  Root token 
n  Rewrite Rules: α→β 
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Grammars (2) 

n Context-Free Grammars 
n  Left side of rule is a single non-terminal 

n Context-Sensitive Grammars 
n  Left side of rule can be a string of tokens, e.g. 

AαA→AρB 
BαC→BσC 

n Grammars can be augmented with 
procedures to express special cases, 
additional language knowledge, etc. 
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Music and Parallelism 

n Conventional (formal) grammars produce  
1-dim strings 

n Replacement is always in 1-dim (a → b c) 
n Multidimensional grammars are simple 

extension: 
n  a → b,c  —sequential combination 
n  a → b|c  —parallel combination 
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Non-Local Constraints 

n This is a real limitation of grammars, e.g. 
n  Making two voices (bass and treble) have 

same duration 
n  Making a call and response have same 

duration 
n  Expressing an upward gesture followed by a 

downward gesture 
n Procedural transformations and constraints 

on selection are sometimes used 

17 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Probabilistic Temporal Graph 
Grammars (D. Quick & P. Hudak) 
n  Local constraints added with new type of rule: 

let x = A in xBx 
is not the same as ABA because x is 
expanded once and used twice, whereas in 
ABA, each A can be expanded 
independently. 

n Durations are handled with superscripts, e.g. 
It → It/2 Vt/2 

means that non-terminal I with duration t can 
be expanded to I V, each with duration t/2.  
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Example 

n Sd -> Sd Pd | Pd 
n Pd -> let x = Qd in x x 
n Qd -> Qd/2 Qd/2 | Bd | Rd 
n where B is a beat, R is a rest 
 
n  A problem(?): Average max  

depth is ~8, but sensible limit 
might be ~5 (thirty-second notes) 

n  With 1/32 lower bound for d:  
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((R 0.125)	
 (B 0.015625)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.000976562)	
 (B 0.000976562)	
 (R 0.00195312)	
 (B 0.00390625)	
 (B 0.00390625)	
 (R 0.00390625)	
 (R 0.00195312)	
 (B 0.00195312)	
 (B 0.015625)	
 (B 0.0625)	
 (B 0.03125)	
 (B 0.0078125)	
 (R 0.0078125)	
 (B 0.00390625)	
 (R 0.00195312)	
 (R 0.00195312)	
 (B 0.0078125)	
 (B 0.03125)	
 (R 0.03125)	
 (R 0.0625)	
 (B 0.0625)	
 (R 0.25)	
 (R 0.25)	
 (R 0.125)	
 (B 0.015625)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.000976562)	
 (B 0.000976562)	
 (R 0.00195312)	
 (B 0.00390625)	
 (B 0.00390625)	
 (R 0.00390625)	
 (R 0.00195312)	
 (B 0.00195312)	
 (B 0.015625)	
 

 (B 0.0625)	
 (B 0.03125)	
 (B 0.0078125)	
 (R 0.0078125)	
 (B 0.00390625)	
 (R 0.00195312)	
 (R 0.00195312)	
 (B 0.0078125)	
 (B 0.03125)	
 (R 0.03125)	
 (R 0.0625)	
 (B 0.0625)	
 (R 0.25)	
 (R 0.25)	
 (R 1)	
 (R 1)	
 (B 0.25)	
 (R 0.25)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.00390625)	
 (B 0.015625)	
 (B 0.03125)	
 (B 0.0625)	
 (B 0.0625)	
 (R 0.0625)	
 (R 0.25)	
 (B 0.25)	
 (R 0.25)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.00390625)	
 (B 0.015625)	
 (B 0.03125)	
 (B 0.0625)	
 (B 0.0625)	
 (R 0.0625)	
 (R 0.25)	
 (B 0.5)	

 (B 0.0625)	
 (B 0.03125)	
 (R 0.03125)	
 (B 0.0625)	
 (R 0.0625)	
 (B 0.25)	
 (B 0.5)	
 (B 0.0625)	
 (B 0.03125)	
 (R 0.03125)	
 (B 0.0625)	
 (R 0.0625)	
 (B 0.25)	
 (R 1)	
 (R 1)) 

Implementation of Grammars 

n Remember, we’re talking about generative 
grammars 

n Maybe you learned about parsing  languages 
described by a formal grammar 

n Generation is simpler than parsing 
n Simplest way is by coding grammar rules as 

subroutines 
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Implementation Example  

n  A à A B 
n  A à B 
n  B à a 
n  B à b 

def A(): 
    if random() < pAB 
        A() 
        B() 
    else 
        B() 
def B() 
    if random() < pa 
        output(“a”) 
    else 
        output(“b”) 
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Assessment 

n  “Rewrite rules and the notion of context-
sensitivity are usually based on hierarchical 
syntactic categories, whereas in music there 
are innumerable nonhierarchical ways of 
parsing music that are difficult to represent as 
part of a grammar.” (Roads, 1996) 
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Pattern Generators 

n Flexible way to generate musical data 
n No formal learning, training, or modeling 

procedure 
n Most extensive implementations are probably 

Common Music, a Common Lisp-based 
music composition environment, and Nyquist 
(familiar from my Intro to Computer Music 
class) 
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Cycle 

n  Input list: (A B C) 
n Rule: repeat items in sequence 
n Output: A B C A B C … 

n Example:  
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Random 

n  Input list: (A B C) 
n Rule: select inputs at random with 

replacement 
n  Input items can have weights 
n Output can have maximum/minimum repeat 

counts 
n Output: B A C A A B C C … 
n Example:                   Example (12-tone):  
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Palindrome 

n  Input list: (A B C) 
n Rule: repeat items forwards and backwards 
n Output: A B C B A B C B  … 
n Additional parameters tell whether to repeat 

first and last items. 
n Example:  
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Heap 

n  Input list: (A B C) 
n Rule: select items at random without 

replacement (until empty) 
n Output: A B C, B C A, C B A, … 
n Example:  
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Markov 

n  Input list: ((A -> B C) (B -> C) (C -> A B) …) 
n Rule: generate a Markov chain 
n Transitions may have weights 
n Output: A B C A C B C B C A … 
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Nested Patterns 

n Pattern items can be patterns, e.g. 
n  Replace every element in a cycle pattern with 

a random pattern. 
 
 
n What’s the traversal order? 

n  generate one period of items from sub-pattern 
before advancing to the next item in the 
pattern 

29 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Example 

n  Every set of 4 pitches is a permutation of {C, D, x, G}, 
where x is randomly selected from E, F, A, Bb 

n  Pick permutations of 4 and repeat them 4 times 
n  (now we have units of 16 pitches: 4 repetitions of 4 

pitches) 
n  Every two units of 16 (i.e. every 32 notes), we apply the 

next transposition from the sequence 0, 5, 7, 0 
n  Here are  2 cycles of that (256 notes) 
n  A picture of 1 cycle of 128:  
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Pattern Periods 

n Pattern output is segmented into periods 
n Typically, period length is the number of items 

used to specify the pattern, e.g. 
cycle([A, B, C, D]) has a period length = 4 

n You can override period length: 
cycle([A, B, C, D], len = 1) 
n  Notice that this can effectively change the 

traversal order 
n Period length can be a pattern! 
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Patterns and Grammars 

n  Nested Common Music patterns can (almost) be used to create 
a context-free grammar. 

n  Current semantics: 
n  Each item is a value or a pattern object 
n  If an item is a pattern, revisiting that item causes the pattern 

object to continue its output generation 
n  Alternative semantics: 

n  Each item is a value or an pattern expression 
n  If an item is a pattern expression, revisiting that item causes 

the pattern expression to generate a new instance of a 
pattern object and return one period 

n  This would enable emulation of (context-free) grammars 
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Template-Based Music 

n  Music can be constrained by templates, grids, scales, 
harmony, etc. 

n  Example: drum machine 

Roland 
CR-78 (1978) 
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Chord Templates 

n Chords are just sets of pitches 
n Can be described as set of pitch classes 

n  If i is MIDI key number, PitchClass(i) = i mod 12 
  C-major = {0, 4, 7}  C-minor = {0, 3, 7} 
  D-major = {2, 6, 9}  D-minor = {2, 5, 9} 
  E7-flat9 = {2, 4, 5, 8, 11} 

n  The bottom-most or bass note is important, so usually 
you also want to specify that too. 
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Bass Lines 

n Chords often specify which note is the lowest 
(bass) note 

n Common to use the root or 3rd of the chord 
n Bass often “outlines” the chord 

n  E.g. alternate root and fifth, or 
n  Root, third, fifth, third pattern, etc. 

n Use templates as in drums and chord 
patterns. 

n Apply rules from harmony, counterpoint, jazz, 
rock, … 

35 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Arpeggiators 

n Cycle through chord tones 
n  E.g. C-major = {0, 4, 7}, so play 0, 4, 7, 0, 4, 7 
n  or 0, 4, 7, 4, 0, 4, 7, … 
n  or 0, 4, 7, 12, 0, 4, 7, 12, … 

Examples from Jim Aiken, secrets-of-the-arpeggiator.html 

Example from http://www.ucapps.de/howto_sid_wavetables_3.html 
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Melody 

n  Very prominent aspect of music, therefore difficult 
n  Chords imply scales: 

n  Simple chords have 3 or 4 pitch classes (out of 12) 
n  Scales are typically 7 pitch classes   

n  do, re, mi, fa, so, la, ti, (do) 
n  Constrain melody to scale 

n  Intervals are typically small -- stepwise motion 
n  Can use histogram for interval selection 
n  Or Markov chain for pitch sequence generation 

n  Rhythm is important too: 
n  Markov Chain 
n  Templates 
n  Maybe 4-bar rhythm patterns from a database 
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Practical Algorithm Music Generation 

n  We've seen some interesting theory 
n  How does this all work in practice? 
n  Assume: goal is to generate "popular" music: rock, 

techno, jazz, dance, etc. 
n  "experimental" music has fewer normative rules and 

more focus on new sounds, new structures, new 
concepts 

n  "classical" music often includes development, 
transformations, themes and variation, which are very 
challenging 

n  Let's look at a direct rule- and probability-based 
method based on Friberg and Elowsson 

n  THIS IS NOT THE ONLY WAY! 

38 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Elowsson and Friberg, “Algorithmic Composition of Popular Music,” 2012. 
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Algorithm Overview 

n Make a structural plan: phrases, repetitions, 
similar rhythms 

n Work phrase-by-phrase: 
n  Compute rhythm track 
n  Compute chords 
n  Compute melody 

n Add a little bit of search and evaluations 
n Almost everything is a random weighted 

choice based on conditional probabilities 
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1. Overall Structure 

n  Currently, overall structure is simply selected 
n  A “little language” is used to express structure: 

n  Same letter means high probability of the same 
melodic contour (same intervals) 

n  A number means copy the rhythm and accents of 
the numbered phrase 

n  E.g. AB1CCAB means B mirrors rhythm of A 
(phrase 1), C repeats, and the final A and B 
mirrors the first A and B 

n  Duration of each phrase can be 2 or 4 measures. 
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2. Rhythmic Structure 

n All measures in 4/4 time 
n Represented as an array of 16th notes 
n E.g. a 4 measure phrase is array(4 * 16) 
n Kick (bass) drum every 2 beats,  
n Pick some extra kick drum beats and add 

them 
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3. Chord Structure 

n Only C major, D and E minor, F and G major, 
and A minor chords are generated 

n Markov Model 
CHORD_TRANSITION = [
#    C  Dm  Em   F   G  Am
  [ 24, 35,  0, 20, 70,  5 ], # to C
  [  2,  2,  5,  1,  1,  5 ], # to Dm
  [  2,  1,  0,  1,  2,  1 ], # to Em
  [ 39,  4, 85,  1, 13, 49 ], # to F
  [ 20, 86,  2, 76,  1, 39 ], # to G
  [ 35,  4,  8,  1, 14,  1 ]] # to Am

n Final chord is C major 
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4. Melodic Structure 

n Compute both pitch and duration: computes 
probability for each combination of 15 pitches 
and 16 durations (1 to 16). 

n For each of 15*16 pitch/duration combinations: 
n  p = 1 
n  For each ith melody rule: 

n  p = p * Pi(pitch, duration) 

n Then select according to computed 
probabilities 
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An Aside: Weighted Selection 

n Given an array weights, choose an index, the 
likelihood of which is proportional to the 
weight 

n The algorithm as a picture: 

n  In serpent: 
require "prob”
print pr_weighted_choice([2, 3, 1.5, 0.1, …])
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1 2 3 4 5 

Pick a random point between 0 and sum sum = Σwi 0 
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4b. Summary of Melody Rules 1 

n Ambitus: discourage extremes of pitch range 
n Harmonic:  Is the note compatible with chord? 
HARMONIZATION = [
// C     D     E     F     G     A     B
 [0.94, 0.30, 0.95, 0.16, 0.87, 0.26, 0.15],  // C

 [0.20, 0.90, 0.26, 0.86, 0.24, 0.88, 0.02],  // Dm
 [0.01, 0.18, 0.87, 0.09, 0.89, 0.24, 0.83],  // Em
 [0.90, 0.26, 0.18, 0.82, 0.29, 0.99, 0.01],  // F
 [0.28, 0.92, 0.28, 0.27, 0.95, 0.30, 0.75],  // G
 [0.92, 0.28, 0.85, 0.03, 0.25, 0.91, 0.20]]  // Am

n  Interval:  
INTERVAL_PROB = [0.2, 0.5, 0.3, 0.2, 0.15, 0.12, 0.03, 0.06]
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4b. Summary of Melody Rules 2 

n  Interval Harmonic: 
n  Prefer that larger intervals go up, prefer 

smaller going down 
n  Avoid “unusual” intervals – e.g. 7th 
n  Avoid intervals larger than 2nds with no chord 

tone 
n  Larger intervals should be in the chord 

n Duration: 
n  Avoid 16th notes at fast tempo 
n  Shorter durations favored over larger ones 
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4b. Summary of Melody Rules 3 

n Position/Duration: do not start and end on an 
odd 16th note beat position 

n Harmonic Compliance/Duration: 
n  Shorter notes favor dissonance 
n  Longer notes favor consonance (with chord) 

n  Interval/Duration: larger intervals imply longer 
durations 

n Phrase Arch: overall melodic contour (not 
implemented yet) 
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4b. Summary of Melody Rules 3 

n Melodic Resolution: melody should approach 
final note with small intervals 

n Resolve to Tonic: melody should end with C 
n Metrical Salience: favor notes on strong 

metrical positions 
n Mirror Intervals: if structure dictates a “mirror” 

phrase, e.g. “AABA”, all the “A”s should have 
similar interval sequences. 
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Constraints, Context, Form 

Form, Repetition 

Harmony Generation 

Bass Melody Chords, 
Voicing 

Plan:  
•  determine form from top down 
•  generate harmony for different sections 
•  fill in bass, chords, melody according to harmony 

49 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Grammar-based Form Generation 

n  Plan:  
n  Generate form from grammar 
n  Control copies at different levels 

n  S = A1 A2 B A2 
n  A1 = C R1 
n  A2 = C R1' 
n  B = tr(B1, 9) tr(B1, 7) |  

       tr(B2, x) tr(B2, x) tr(B2, y) tr(B2, 5) 
n  A1, A2 are 8 measures, 
n  B1 is 4 measures, B2 is 2 measures 
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Representation 

n  Time in beats 
n  Easy to append and merge 
n  [time-origin, duration, data-type, event-array] 

n  data-type: 'chord', 'note'  
n  Chord: [time-offset, duration, array-of-pcs] 
n  Note: [time-offset, duration, pitch] 

n  Notes:  
[0, 4, 'note', [[0, 1, 60], [1, 1, 62], [2, 1, 64]]] 

n  Chords:  
[0, 4, 'chord', [[0, 2, [0, 4, 7]], [2, 2, [0, 3, 7]]]] 
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Representation 

n  [0, 4, 'note', [[0, 1, 60], [1, 1, 62], [2, 1, 64]]] 

Duration 
Start 

Explicit start/duration allows us to represent 
measures that are not completely full, silence, or 
even measures where notes extend into the next 
block 
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Manipulation: Code Example 

// note: be sure to understand shallow vs deep copy 
def sc_shift(s, shift) 
    var events = [] 
    for e in sc_events(s) 
        events.append([e[0] + shift, e[1], e[2]]) 
    return [s[0] + shift, s[1], s[2], events] 
 
def sc_merge(a, b) 
    sc_check_compatible(a, b) 
    var start = min(sc_time(a), sc_time(b)) 
    var end = max(sc_end(a), sc_end(b)) 
    return [start, end - start, a[2], 
            (sc_events(a) + sc_events(b)).sort()] 
 
def sc_append(a, b) 
    sc_merge(a, sc_shift(b, sc_end(a) - sc_time(b))) 
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Example: Generating Repeating Chord 
Progression 

one = [0, 2, 'chord', [[0, 2, [0, 4, 7]]]] 
two = [0, 2, [2, 5, 9]] 
three = [0, 2, [4, 7, 11]] 
four = [0, 2, [5, 9, 0]] 
five = [0, 2, [7, 11, 2, 5]] 
six = [0, 2, [9, 0, 4]] 
seven = [0, 2, [11, 2, 5]] 
progression = one 
for i = 1 to 6 
    progression = sc_append(progression, pick_next()) 
progression = sc_append(sc_append(progression, one), one) 
score = sc_append(progression, progression)  
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Example: Influence melody with chord 
tones 

n  Imagine a set of prior probabilities for chosing 
a pitch class at time b: prior[i] 

n Given a chord score s, let's make chord-tones 
twice as likely: 
var pcs = sc_pitches_at(s, b) 
for pc in pcs 
    prior[pc] = prior[pc] * 2 

n Pick a pitch class:  
var pc = index_choice(prior) 
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Summary 

n  Markov Models 
n  Easy to learn from examples 
n  Only very local context 

n  Grammars 
n  Recursive 
n  Can generate concurrent structures 
n  (Mostly) very local context 

n  Patterns 
n  Expressive way to create abstract hierarchical structure 

n  Structure + Probability example  
n  for popular music  
n  Music production (instrumentation, texture, “arrangement”) is 

lacking 
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Summary 2 

n  “Algorithmic Music” (Markov, Grammars, 
Patterns, etc.)  
n  Creates very interesting, specific music material 
n  Often one develops a new “algorithm” or 

algorithmic materials for each composition 
n  Strong impact on artistic thinking, 20th-21st C. 

n  AI techniques  
n  More general, 
n  Too homogeneous to be really interesting (IMO) 
n  Catching popular and researcher’s imagination 

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 57 

Suffix Trees and Music 

n Markov Chains use fixed number of previous 
states to determine probability of next state 

n Standard implementation is a (sparse) matrix 
n What if you could consider prefixes of length 

1, 2, 3, … N for a fairly large N? 
n Suffix tries and trees: fast access to next 

states given previous states 
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What’s a Trie? 

n See Wikipedia for an excellent overview 
n An ordered tree structure 
n Useful as an associative array 
n Keys are strings 
n Whole keys are not stored; 
n  Instead, key is a path from the root of the trie 
n  “Trie” from retrieval, pronounced either 

“tree” or “try” (I’ll use “try”). 
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Suffix Trie 

(from http://www.dogma.net/markn/articles/suffixt/suffixt.htm) 
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Suffix Tree 

n Eliminate nodes with single descendent 
n Represent nodes as <start, stop> index pair 

(from http://www.dogma.net/markn/articles/suffixt/suffixt.htm) 
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Why Suffix Trees? 

n Allows fast search for pattern in string:  
n  O(n) preprocessing, where n is length of string 

n  Note: the tree construction is non-trivial. Naïve 
construction is O(n2). 

n  O(m) per pattern search, where m is length of 
pattern 
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Related Structure for Markov-Like 
Learning & Generation 

n Consider: A B C A C B A  
n First-Order Markov Chain requires that we 

look to previous state 
n Second-Order MC: look to previous 2 states 
n Third-Order MC: 3 states 
n Suppose we look to previous 1, then 2, then 

3, until the data becomes too sparse to be 
reliable 

n Alternatively, maybe we want overfitting to 
echo what we’ve heard in the past 

63 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 

Suffix Trie with Limited Depth and 
Counts at Each Node 

1st Order 
 
 
2nd Order 
 
 
3rd Order 

:13 

A:2 B:10 C:1 

B:2 A:5 C:3 B:1 A:1 B:1 

A:2 C:2 B:1 C:3 C:2 C:1 B:1 A:1 

Assume that so far, we’ve generated: B A A B C C B,  we can search: 
•  second order: C B (next state is A) 
•  first order: B (next states and weights are A:5, B:2, C:3) 
•  zero order: (next states and weights are A:2, B:10, C:1) 
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Pruning the Tree 

n  Defn: Empirical probability 
n  the number of times pattern appears divided by 

number of times it could possibly appear. 
n  E.g. in “aabaaab”, P(“aa”) = 3/6 = 0.5 

n  “Benefit of Context” 
n  The empirical conditional probability is greater (by 

some factor) when the context is longer 
n  E.g. P(“b”|“aa”) = 2/3, P(“b”|“a”) = 2/5; The ratio 

is 5/3 (the benefit of knowing “aa” vs. “a”) 

Based on: Dubnov, Assayag, Lartillot, Bejerano. “Using Machine-Learning Methods for Musical Style 
Modeling.” IEEE Computer, August 2003. 
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Pruning the Tree (2) 

n So tree retains only nodes where: 
n  Pattern length < L 
n  Empirical Probability > Pmin 
n  Benefit of Context > r 

n Smoothing: combine probabilities based on 
all matching patterns.  
n  E.g. the next symbol x after “aabc” would 

combine P(x | “aabc”), P(x | “abc”), P(x | 
“bc”), P(x | “c”) and P(x), omitting P’s where 
context is not in the pruned tree.  
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Example 

n  Piano improvisation using variable order Markov Chain 
n  Analysis: 

n  Reduce polyphony to sequence of “compound events” 
n  States are (pitch class sets) x (log duration). [212�5 states] 

n  0 if <0.1, 1 if <0.2, 2 if <0.4, 3 if <0.8, 4 if >0.8 
n  Create transition counts tables for 1st and 2nd order Markov Chains, 

using 12 different transpositions of the input data 
n  Remember “real” performances (durations, velocity) for each state 

n  Generation: 
n  Using the last state or last 2 states depending on choices and 

mode. 
n  Pick a next state 
n  Append a “real” performance of that state. 
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More Examples 
n  http://www.ircam.fr/equipes/repmus/MachineImpro 
n  Example 1 

n  1.1 Original improvisation by Chick Corea   Listen to Corea (mp3) 
n  1.2 Three machine improvisations generated after learning 1.1 
n  Listen to Impro 1 (mp3)   Listen to Impro 2 (mp3)  Listen to Impro 3 (mp3) 

n  Example 2 
n  One machine improvisation generated on "Donna Lee" by Charlie Parker 
n  Listen to Impro (mp3) 
Comment : From a midifile containing an arrangement of this standard (theme exposition plus 

chorus). Took only the sax and bass channels. The strange bass rhythm behavior is due to a 
bug in the quantization algorithm, we kept it because the somewhat free style that results in 
an interesting remainder of some jazz tendencies in the sixties. 

The machine impro begins with a recombinant variant of the theme, then dives into a bop style 
chorus. 

n  Example 3 
n  One machine improvisation generated after learning J.S. Bach Ricercar 
n  Listen to Impro (mp3) 
n  Comment : Bach's ricercar is a six voice fugue. The information is extremely constrained, so 

the analysis/generation algorithm has very few choices for continuations. It tends to 
reproduce the original. But if you listen carefully, you'll hear that there are discrete 
bifurcations where it recombines differently from the original. 
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Examples (2) 
n  Example 4 

n  A study in the style of Jazz guitarist Pat Martino. Here's an idea of the original 
style (Blue Bossa) : 

n  Listen to Pat Martino (mp3) 
n  The learning process was based on a Midifile containing a transcription of Martino chorusing 

on Blue Bossa. After generating a few machine choruses, and choosing carefully a one that 
would fit, we mixed it back into Martino's audio recording, in a place where only the rhythmic 
section was playing (plus some piano). The machine impro is played with an (ugly) synthetic 
Midi Sax sound. 

n  Listen to Mix (mp3) 
n  Comment : That experience was done in order to evaluate if the techniques used could make 

sense in a performance situation, with a musician playing with his clone. The result is 
encourageing, but in a real-time experiment, we would have to extract the beat and the 
harmony in order to control what's happening. In this case, we just inserted the machine 
impro by hand, tuning the tempo so it would fit with the audio. 

n  Example 5 
n  A Real-Time performance experiment. 
n  Because the rhythm section is generated, we know the beat/harmony segmentation. The 

machine learns the correlation between the beat structure, the harmonic structure, and what's 
played by the performer. Sequence 5.1.  

n  Listen to Sequence 5.1 (human on piano) 
n  Listen to Sequence 5.2 (human + computer) 
n  Listen to Sequence 5.3 (human’s new chords reused by computer) 
n  Listen to Sequence 5.4 (computer alone) 
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Another Data Structure 

n Paths from root to leaf nodes are reverse 
suffixes, e.g. for A B A A C B A, 
n  A à B, BàC, ABàC, CàA, BCàA, ABCàA, 

A (A, B, C) B (A) C (B) 

A (C) B (A) A (A) C (A) A (B) 
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David Cope: Recombinant Music 

n Create fragments from compositions 
n Reassemble fragments to form pieces 

 
n Search for patterns based on melodic 

intervals 
n Harmonic context (chord progressions) of 

each melodic fragment are retained 
n Patterns of harmony are also discovered 
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Signatures 
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Recombination 
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Examples 

n Based on Scarlatti 
n Based on Bach Invention 
n Based on Joplin Rag 
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Recent Work 

n Some interesting work on treating digital 
audio samples as learnable sequences: 

n We can look at notes, chords, or other music 
representations in terms of sequences: 
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Credit: WaveNet project from DeepMind  
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 

Credit: Sony CSL FlowComposer Project, 2016 
http://www.flow-machines.com/wp-content/uploads/2016/06/Miles-Davis-Mix_DEF.mp3 

Summary 

n Sequence Learning can be applied to Music 
generation 

n  “symbols” can be pitches or, more likely, 
combinations of pitch+duration 

n Markov Chain concepts can be extended to 
variable length suffixes 

n Suffix trees and related structures provide 
efficient representations 

n  “Modern” machine learning approaches are 
actively (re)exploring these concepts 
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