Structure and Interpretation of Music Concepts

Specification of music processes -- The Elements of Programming

Homework no. 1 -- 1.1

Due: September 6, 2001

1. Evaluate the following expressions in order, according to the

 evaluations rules of Scheme, and explain the results, and the errors.

 > (* (+ 5 6) -3)

 > (* 5 -6)

 > (* 5 - 6)

 > (5 * 6)

 > 5*6

 > (* 2 5*6)

 > (define 5*6 (+ 2 2))

 > 5*6

 > (* 2 5*6)

 > (5 * (2 + 2))

 > (5*6)

 > ((* 5 6))

2. Define a procedure named 'square-dif-pitch' that takes 3 numbers as

 arguments and returns a note whose pitch, duration, and loudness values are

 the square of the difference of the 2 smaller numbers.

3. Given the following two procedures:

 (define (p x) (p (+ x 1)))

 (define (test-pitch p q)

 (if (= (midi-pitch p) 0)

 0

 y))

 What is the result of evaluating the form

 (test-pitch (make-pitch 0) (p 1))

 under applicative-order evaluation and under normal-order evaluation?

4. Similarly to the pitch relation implemented in class, we can define a

 duration relation.

 Consider the following duration relation:

 Duration D2 is the integre part of the forth root of the duration D1.

 a. There is a Newton's method for computing forth roots, based on the

 following fact:

 If y is an approximation of the forth root of x, then

 (x/(y**3) + 3y):4

 is a better approximation.

 A close look into this method shows that it consists of a REPETITIVE

 step as follows:

 1. Is the current guess close enough to the square-root? (GOOD-ENOUGH?)

 2. If not--compute a new guess. (IMPROVE).

 Let us call the step 'forth-ITER'. Then the method consists of repeated

 applications of forth-iter.

 Use this formula to implement a forth-root procedure.

 Consult the on-line scheme revised-report(5) for teh necessary arithmetic

 primitives.

 b. write a procedure receives a note as a parameter and returns a new note

 with the same pitch and loudness, but whose duration is the forth root of

 the given note.

5. Suppose that we replace the primitive procedure "if" by a compound

 procedure "new-if", defined using "cond" as follows:

 (define (new-if predicate then-clause else-clause)

 (cond (predicate then-clause)

 (else else-clause)))

 For example: (new-if (= 5 5) 0 1)

 evaluates to 0, and (new-if (= 5 6) 0 1) evaluates to 1. Try it!

 Consider the following procedure for computing the factorial function:

 (define (factorial n)

 (new-if (= n 1)

 1

 (* n (factorial (- n 1)))

))

 Try this definition of factorial. Explain what happens.

6. The following procedure 'pitch-multiplication-close-to' finds the pitch

 whose value is the smallest multiplication of the pitch value of its first

 argument, that is greater than its second argument.

 (define (pitch-multiplication-close-to pitch n)

 (make-pitch (multiplication-iter (midi-pitch pitch) n 1)))

 (define (multiplication-iter b n e)

 (if (> (* b e) n)

 e

 (multiplication-iter b n (+ e 1))))

 Embed the definition of 'multiplication-iter' inside

 'pitch-multiplication-close-to'.

 Take advantage of lexical scoping to remove unnecessary parameters

 from the embedded 'multiplication-iter', and explain why you could remove

 those parameters.

