Structure and Interpretation of Music Concpets

Class 10 - Tonal Arithmetics.

The Tonal Music Pitch and Interval Domain: Terminology, Arithmetics, Physical mappings.

The domain of notes and intervals in tonal music is created by a rich set of pitch-classes (interval-classes), that is much larger than the set of physical pitch-classes to which they are mapped. The set of Tonal-Pitch-Classes (TPC) (Tonal-Interval-Classes (TIC)) is generated by extending the western twelve tone selection with an additional seven tone selection – called the diatonic points. The overall TPC (TIC) domain is a set of pairs, that correspond to the diatonic points, and amount of alteration. Since the diatonic points map in a 1:1 manner to specific 12-tone pitch-classes, these pairwise values map also to the 12-tone pitch-classes. However, the mapping is no longer 1:1.

These class notes include the definition of the TPC and TIC concepts, the *Tonal-Pitch* and *Tonal-Interval* concepts, and their arithmetics. The definition of the concepts is done by providing a single abstraction for both concepts: *Tonal-Class* and *Tonal-Element*. The arithmetics is obtained from a mapping of the Tonal-Class values to 12-tone pitch-classes, and from two enumerations of the Tonal-Element values:

- diatonic_value, that enumerates only the diatonic points in each octave and hence, every octave includes only 7 elements.
- 2. chromatic_value, that enumerates all 12 pitch-classes in each octave and hence, every octave includes 12 elements.

This way we obtain a uniform, single arithmetics for all Tonal-Pitch and Tonal-Interval computations, therby avoiding the need to provide separate arithmetics for the different types. The arithmetics characterizes the set of Tonal-Elements as a commutative group, and supports further operations and characterizations.

1 Terminology - Types

1.1 Tonal-Pitch-Class, Tonal-Interval-Class, Tonal-Class

Tonal-Pitch-Class

- 1. $Diatonic_Pitch = \{C, D, E, F, G, A, B\}$
- 2. $Pitch_Alteration = \{bb, b, \sharp, \sharp, \sharp\sharp\}$

3. $Tonal_Pitch_Class\ (TPC) = Diatonic_Pitch \times Pitch_Alteration$

For example: (C, \sharp) for the C sharp pitch class.

Tonal-Interval-Class

- 1. $Diatonic_Interval = \{Prime, Second, Third, Fourth, Fifth, Sixth, Seventh\}$
- 2. $Interval_Alteration = \{Diminished, Minor, Major, Perfect, Augmented\}$
- 3. $Tonal_Interval_Class\ (TIC) = Diatonic_Interval \times Interval_Alteration$

For example: (Fifth, Perfect) for the perfect fifth interval class.

Tonal-Class

- 1. $Diatonic_Point = \{0, 1, 2, 3, 4, 5, 6\}$
- 2. Alteration = I, the set of integers.
- 3. $Tonal_Class\ (TC) = Diatonic_Point \times Alteration$

For example: (0, -1) for the (C, \sharp) pitch-class, or for the (Prime, Diminished) interval-class.

Selectors for the Tonal Class type:

 $diatonic: Tonal_Class \rightarrow Diatonic_Point.$ $alteration: Tonal_Class \rightarrow Alteration.$

1.2 Tonal-pitch, Tonal-Interval, Tonal-Element

- 1. Octave = I, the set of integers. $Positive_Octave = N$, (including 0).
- 2. $Tonal_pitch = Octave \times TPC$.

 The intention is that octave number 0 marks the middle octave (midi-pitch 60 72).
- 3. Tonal_Interval = {up, down} × Octave × TIC.
 For example: (down, 1, (Fifth, Perfect)) marks an interval of a whole octave + a perfect fifth in the downword direction.
- 4. Tonal_Element = Octave × TC.
 For example, (-3, (0, -1)) is a tonal element that denotes the tonal pitch Cb, 3 octaves below middle C − (3, (C, b)), or the donword tonal interval of 3 octaves and augmented prime − (downword, 3, (Prime, Augmented)).

2 Mapping the Tonal Level to a Diatonic and Twelve Tone Enumeration

Diatonic Points

 $value: Diatonic_Point \rightarrow Music_Pitch_Class,$ defined as follows:

Tonal Class Mapping

The value mapping is extended to values of the Tonal_Class set:

 $value: Tonal_Class \rightarrow I$, the set of integers,

defined by: value(d, a) = value(d) + a.

Tonal Element Mapping

Each tonal element value has two values associated with it: A diatonic_value, that provides the diatonic position in a diatonic points axis, and chromatic_value, that provides the position in a music pitch axis. The arithmetics of the tonal elements arises from coordination of these two values. The diatonic_value provides a count of the tonal element on an axis of diatonic points (base 7), and the chromatic_value provides the actual music pitch (a count on an axis of music pitch classes – base 12).

- 1. $diatonic_value : Tonal_Element \rightarrow I$:
 - where,

 $diatonic_value(o, tc) = 7 * o + diatonic(tc)$

Example: $diatonic_value(-1, (6, 2)) = 7 * (-1) + 6 = -1$

- 2. $chromatic_value : TE \rightarrow I$:
 - where,

 $chromatic_value(o, tc) = 12 * o + value(tc)$

Example: $chromatic_value(-1, (6, 2)) = 12 * (-1) + 11 + 2 = 1$

3. $music_pitch : TE \rightarrow Music_Pitch$:

where, $music_pitch(o,tc) = (o + 5 + mod_quotient(value(tc), 12), modulo(value(tc), 12))$

where $mod_quotient$ and modulo are quotient and remainder functions that return always a positive "modulo" remainder, and a quotient that together account for the whole division. They are defined at the end of this document. Modulo is a primitive of Scheme.

3 Arithmetics

Proposition 1 Given two integers dv and cv, they uniquely define a tonal element (o, tc) as follows:

- 1. $o = \lfloor \frac{dv}{7} \rfloor$
- 2. diatonic(tc) = modulo(dv, 7)
- 3. $alteration = cv chromatic_value((o, (diatonic_point(tc), 0)))$

Definition 1 Addition of tonal elements:

Let (o_1, tc_1) , (o_2, tc_2) be tonal elements. Their addition, $(o, tc) = (o_1, tc_1) + (o_2, tc_2)$, is the tonal element that is uniquely defined (by the above Proposition) from:

- $dv = diatonic_value(o_1, tc_1) + diatonic_value(o_2, tc_2)$
- $cv = chromatic_value(o_1, tc_1) + chromatic_value(o_2, tc_2)$

Claim 1 The set TE of tonal elements, together with the addition operation forms a commutative additive group.

Proof:

- 1. **Commutativity**: By the commutativity of numeric addition, and the above proposition, $(o_1, tc_1) + (o_2, tc_2) = (o_2, tc_2) + (o_1, tc_1)$
- 2. **Associativity**: By the associativity of numeric addition, and the above proposition, $(o_1, tc_1) + ((o_2, tc_2) + (o_3, tc_3)) = ((o_1, tc_1) + (o_2, tc_2)) + (o_3, tc_3)$
- 3. Unit element: For every tonal element (o, tc): (o, tc) + (0, (0, 0)) = (o, tc)
- 4. **Inverse element**: The inverse element of a tonal element (o, tc) is defined by the above Proposition from:
 - $dv = -(diatonic_value(o, tc))$
 - $\bullet \ cv = -(chromatic_value(o,tc))$

It is easy to verify that the inverse element, denoted -(o, tc) indeed satisfies: (o, tc) + (-(o, tc)) = (0, (0, 0))

Definition 2 Subtraction of tonal elements:

$$Let \ (o_1, tc_1) \ \ and \ (o_2, tc_2) \ \ be \ tonal \ elements. \ \ Then: \quad (o_1, tc_1) - (o_2, tc_2) = (o_1, tc_1) + (-(o_2, tc_2))$$

4 Translations from and to the Tonal Pitch and Tonal Interval to the Tonal Element Abstraction

- 1. Mapping Tonal-Pitch-Classes and Tonal-interval-Classes to Tonal-Classes, and back:
 - (a) The translations $tpc \to tc$ and $tc \to tpc$ to and from Tonal-Pitch-Classes and Tonal-Classes are defined component-wise, in the following tables:

$diatonic \bot pc \leftrightarrow tc$							
$Diatonic_Pitch$	C	D	E	F	G	\overline{A}	\overline{B}
Diatonic_Point	0	1	2	3	4	5	6

$alteration_tpc \leftrightarrow tc$					
$Pitch_Alteration$	bb	þ	4	#	##
Alteration	-2	-1	0	1	2

For example : $tpc \to tc(G, \sharp\sharp) = (4, 2)$

(b) The translations to and from Tonal-Interval-Classes and Tonal-Classes are defined component-wise, in the following tables:

$diatonic \bot ic \leftrightarrow tc$							
$\overline{Diatonic_Interval}$	Prime	Second	Third	Fourth	Fifth	Sixth	Seventh
$Diatonic_Point$	0	1	2	3	4	5	6

For a $Diatonic_Interval \in \{Prime, Fourth, Fifth\}$:

$alteration_Perfect_tic \leftrightarrow tc$			
$\overline{Interval_Alteration}$	Diminished	Perfect	Augmented
Alteration	-1	0	1

For a $Diatonic_Interval \in \{Second, Third, Sixth, Seventh\}$:

$\underline{alteration_MajMin_tic \leftrightarrow tc}$				
$Interval_Alteration$	Diminished	Minor	Major	$\overline{Augmented}$
Alteration	-2	-1	0	1

For example: $tic \rightarrow tc(Fourth, Augmented) = (3, 1)$

- 2. Translations from and to Tonal Pitches and Tonal Elements:
 - $tp \rightarrow te(o, tpc) = (o, tpc \rightarrow tc(tpc))$

- $te \rightarrow tp(o, tc) = (o, tc \rightarrow tpc(tc))$
- 3. Translations from and to Tonal Intervals and Tonal Elements:
 - $ti \rightarrow te(dir, o, tic) =$ if dir = up: $(o, tic \rightarrow tc(tic))$ if dir = down: $-(ti \rightarrow te(up, o, tic))$ where is the inverse operation of + on TE.
 - $te \to ti(o,tc) =$ if $o \ge 0$: $(up, o, tc \to tic(tc))$ if o < 0: $(te \to ti(-(o,tc)))_{/dir=down}$ where is the inverse operation of + on TE, and for a $Tonal_Interval$ ti, $ti_{/dir=val}$ denotes a $Tonal_Interval$ that is equal to ti except for dir = val.

Example 1 Translations: Tonal Elements, Tonal Pitches, Tonal Intervals:

- $ti \rightarrow te((up, 1, (Fifth, Diminished))) = (1, (4, -1))$
- $ti \rightarrow te((down, 1, (Fifth, Diminished))) = -(1, (4, -1)) = (-2, (3, 1))$
- $te \to tp((0, (4, 1))) = (0, (G, \sharp))$
- $te \rightarrow ti((0,(6,0))) = (up, 0, (Seventh, Major))$

Example 2 Tonal Arithmetics:

- 1. $Tonal_Pitch + Tonal_Interval = Tonal_Pitch$: $(0, (G, \natural)) + (up, 0, (Fourth, Perfect)) =$ $te \rightarrow tp[tp \rightarrow te((0, (G, \natural))) + ti \rightarrow te((UP, 0, (Fourth, Perfect)))] =$ $te \rightarrow tp[(0, (4, 0)) + (0, (3, 0))] = te \rightarrow tp((1, (0, 0))) = (1, (C, \natural))$
- 2. $Tonal_Interval + Tonal_Interval = Tonal_Interval$: (up, 0, (Third, Major)) + (up, 0, (Third, Minor)) = $te \rightarrow ti[ti \rightarrow te((up, 0, (Third, Major))) + ti \rightarrow te((up, 0, (Third, Minor)))] =$ $te \rightarrow ti[(0, (2, 0)) + (0, (2, -1))] = te \rightarrow ti((0, (4, 0))) = (up, 0, (Fifth, Perfect))$
- 3. $Tonal_Interval Tonal_Interval = Tonal_Interval$: (up, 0, (Seventh, Minor)) - (up, 0, (Third, Minor)) = $te \rightarrow ti[ti \rightarrow te((up, 0, (Seventh, Minor))) - ti \rightarrow te((up, 0, (Third, Minor)))] =$ $te \rightarrow ti[(0, (6, -1)) - (0, (2, -1))] = te \rightarrow ti[(0, (6, -1)) + (-(0, (2, -1)))] =$ $te \rightarrow ti[(0, (6, -1)) + (-1, (5, 0))] = te \rightarrow ti((0, (4, 0))) = (up, 0, (Fifth, Perfect))$

```
4. \ Tonal\_Pitch - Tonal\_Pitch = Tonal\_Interval:
     (0, (G, \natural)) - (1, (C, \natural)) =
     te \rightarrow ti[tp \rightarrow te((0, (G, \sharp))) - tp \rightarrow te((1, (C, \sharp)))] =
     te \to ti[(0, (4, 0)) - (1, (0, 0))] = te \to ti[(0, (4, 0)) + (-(1, (0, 0)))] =
     te \to ti[(0, (4, 0)) + (-1, (0, 0))] = te \to ti((0, (3, 0))) = (up, 0, (Fourth, Perfect))
Scheme procedures for mod-quotient and modulo.
_____
(define (mod-quotient n1 n2)
   (numerator (/ (- n1 (modulo n1 n2))
                   n2)))
(define (true-mod-quotient-modulo n1 n2)
         (= n1 (+ (* (mod-quotient n1 n2) n2)
                   (modulo n1 n2))))
> (mod-quotient 50 12)
> (modulo 50 12)
> (modulo -50 12)
10
> (mod-quotient -50 12)
-5
> (true-mod-quotient-modulo 50 12)
> (true-mod-quotient-modulo -50 12)
#t
> (true-mod-quotient-modulo 0 12)
#t
```