01-10-15 13:31 class6.scm Page 1

 1

 2

 3

 4

 5 STRUCTURE AND INTERPRETATION OF MUSIC CONCEPTS

 6 __

 7 ==

 8

 9 CLASS 6: Modeling Music-Structure Rules and Constraints

 10 ___

 11 ===

 12

 13 The music concepts that we formulated include different kinds of

 14 constraints and rules.

 15

 16 * The MUSIC-PIITCH-SEQUENCE concept, that serves as the basis for

 17 the MELODY-SEGMENT and the MELODY concepts.

 18 Narmour rules -- are sort of advice/characterization for melodic

 19 sequences.

 20

 21 * The RHYTHM rules: hierarchy constructing rules + constraints,

 22 for those rhythms that are acceptable in tonal/atonal music.

 23

 24 * The MELODY concept -- hierarchy constructing rules. Constraints

 25 on the hierarchy. The constraints can be applied only for fully

 26 instantiated hierarchy (with MELODY-SEGMENT leaves).

 27

 28 * The Schoenberg serial music rules -- besides the serial operations,

 29 there are rules/advice for the music creation.

 30

31 Our goal is to observe various formal/quasi-formal models for capturing

32 These characterizations.

 33

 34 We first consider LANGUAGE specification models.

 35

 36 Our goal:

 37 OBSERVE SIMILARITIES AND CHARACTERIZE DIFFICULTIES IN USING THESE

 38 MODELS FOR MODELING TH MUSIC CONCEPTS.

 39

 40

 41 LANGUAGE CONCEPTS:

 42 ==================

 43 ** A LANGUAGE is a set of sentences. In the area of Formal Language studies,

 44 a language is defined as a set of words..

 45

 46 ** A GRAMMAR is a formal model for characterizing the sentences/words of a

 47 language.

 48 * The grammar defines the language.

 49 * The grammar provides further information about the sentences/words.

 50 - structure.

 51 - semantics.

 52 - inter-relationships among parts.

 53 - ...

 54

 55 ** A SENTENCE in a natural language is a sequence of WORDS.

 56 In formal language, the equivalent of a sentence is the WORD: a sequence

01-10-15 13:31 class6.scm Page 2

 57 of SYMBOLS.

 58 The words/symbols define the VOCABULARY of the language.

 59

 60 ** A grammar defines the language using DERIVATIONS.

 61

 62 ** FORMAL LANGUAGE GRAMMARS:

 63 A (context-free) grammar is a quadruple: (N, T, S, P)

 64 where N is the set of non-terminal symbols (categories).

 65 T is the set of symbols.

 66 S is the start symbol.

 67 P is a set of derivation (rewrite) rules.

 68 The vocabulary of symbols of a grammar is the union of the sets N and T.

 69

 70 A derivation rule has the form:

 71 A -> w where A is a non-terminal symbol, and w is a word over

 72 N union with T.

 73

 74 The LANGUAGE OF A GRAMMAR (denoted L(G)) is the set of all terminal

 75 words that can be derived (using the transitive closure of the

 76 derivation relation) from the start symbol S.

 77

 78 Each derivation is associated with a single DERIVATION-TREE (also

 79 right-most/left-most derivations). The derivation tree assigns

 80 STRUCTURE to the derived sentence/word.

 81

 82 Relevance of the structure: The structure implies the MEANING

 83 (intended semantics) of the derived sentence.

 84

 85 USAGE of grammars: Generation of sentences.

 86 Analysis-parsing of sentences.

 87

 88 NATURAL LANGUAGE PROCESSING -- NLP

 89 ==================================

 90 In natural languages, context-free grammars are considered insufficient,

 91 since:

 92 1. They cannot express inter-component dependencies.

 93 2. Multiple parameters/dimension modeling.

 94

 95 NLP grammars are more complex. They include FEATURE STRUCTURES that enable

 96 the INEDEPENDENT AND INTERLEAVED SPECIFICATIONS of different dimentions.

 97

 98 **

 99 * Grammars are models for SYMBOLIC MANAGEMENT OF *

100 * LANGUAGE STRUCTURES. *

101 **

102

103 ***

104 Here is an example of using context-free grammar for generation in NLP

105 (taken from P. Norvig: AI Programming -- Case Studies in Common LISP.

106 1992. morgan-Kaufmann)

107

108

109 NORVIG: Chapter 2 -- File simple.lsp

110 ===================================

111

112

01-10-15 13:31 class6.scm Page 3

113

114

115 ;;;; -*- Mode: Lisp; Syntax: Common-Lisp -*-

116 ;;; Code from Paradigms of Artificial Intelligence Programming

117 ;;; Copyright (c) 1991 Peter Norvig

118

119

120 TASK: Generate random English sentences, that are described by a simple grammar.

121

122

123 Given the following TINY grammar:

124

125 Sentence ==> Noun-phrase + verb-phrase

126 Noun-phrase ==> Article + Noun

127 Verb-phrase ==> Verb + noun-phrase

128 Article ==> the, a, ...

129 Noun ==> man, ball, woman, table, ...

130 Verb ==> hit, took, saw, liked, ...

131

132

133 I.

134 ==

135 A straightforward solution: Represent each grammar rule by a separate LISP

136 function:

137

138 (defun sentence () (append (noun-phrase) (verb-phrase)))

139 (defun noun-phrase () (append (Article) (Noun)))

140 (defun verb-phrase () (append (Verb) (noun-phrase)))

141 (defun Article () (one-of '(the a)))

142 (defun Noun () (one-of '(man ball woman table)))

143 (defun Verb () (one-of '(hit took saw liked)))

144

145 These are no-argument functions. But they can return different values since

146 they use the random functions (these are not functions in the mathematical

147 sense).

148 ;;; ==============================

149

150 (defun one-of (set)

151 "Pick one element of set, and make a list of it."

152 (list (random-elt set))) ; All functions in the grammar return lists.

153

154 (defun random-elt (choices)

155 "Choose an element from a list at random."

156 (elt choices (random (length choices))))

157

158

159 => (length '(hit took saw liked))

160 4

161 => (random 4)

162 3

163 => (random 4)

164 1

165 The function 'random' returns an integer between 0 to n-1, when applied to n.

166 => (elt '(hit took saw liked) 0)

167 hit

168 => (elt '(hit took saw liked) 1)

01-10-15 13:31 class6.scm Page 4

169 took

170 => #'elt

171 #<function 2 #xB61478>

172 => #'random

173 #<function 1 #x876088>

174 => #'length

175 #<function 1 #xB61AFC>

176

177 => (sentence)

178 (a man hit a man)

179 => (sentence)

180 (the ball hit the man)

181 => (sentence)

182 (the ball saw a man)

183 => (verb-phrase)

184 (liked the ball)

185

186 => (trace sentence noun-phrase verb-phrase article noun verb)

187 (sentence noun-phrase verb-phrase article noun verb)

188

189 => (sentence)

190 sentence [call 1 depth 1] with no args

191 noun-phrase [call 1 depth 1] with no args

192 article [call 1 depth 1] with no args

193 article [call 1 depth 1] returns value: (the)

194 noun [call 1 depth 1] with no args

195 noun [call 1 depth 1] returns value: (table)

196 noun-phrase [call 1 depth 1] returns value: (the table)

197 verb-phrase [call 1 depth 1] with no args

198 verb [call 1 depth 1] with no args

199 verb [call 1 depth 1] returns value: (took)

200 noun-phrase [call 2 depth 1] with no args

201 article [call 2 depth 1] with no args

202 article [call 2 depth 1] returns value: (a)

203 noun [call 2 depth 1] with no args

204 noun [call 2 depth 1] returns value: (ball)

205 noun-phrase [call 2 depth 1] returns value: (a ball)

206 verb-phrase [call 1 depth 1] returns value: (took a ball)

207 sentence [call 1 depth 1] returns value: (the table took a ball)

208 (the table took a ball)

209

210 => (untrace)

211 (verb noun article verb-phrase noun-phrase sentence)

212

213

214 ;;; ==============================

215 2. Further complicate the grammar:

216

217 Noun-phrase ==> Article + Adj* + Noun + PP*

218 Adj* ==> 0, Adj + Adj* ;; Adj* denotes 0 or more adjectives.

219 PP* ==> 0, PP + PP* ;; PP* denotes 0 or more prepositional phrases.

220

221 PP ==> Prep + Noun-phrase

222 Adj ==> big, littel, red, blue, ...

223 Prep ==> to, in, by, with, ...

224

01-10-15 13:31 class6.scm Page 5

225

226 The rules for Adj* and PP* contain choices:

227

228 (defun Adj* ()

229 (if (= (random 2) 0)

230 nil

231 (append (Adj) (Adj*))))

232

233 (defun PP* () ; A different implementation

234 (if (random-elt '(t nil))

235 (append (PP) (PP*))

236 nil))

237

238 (defun noun-phrase () (append (Article) (Adj*) (Noun) (PP*)))

239 (defun PP () (append (Prep) (noun-phrase)))

240 (defun Adj () (one-of '(big little blue green adiabatic)))

241 (defun Prep () (one-of '(to in by with on)))

242

243

244 => (adj*)

245 nil

246 => (adj*)

247 nil

248 => (adj*)

249 (blue)

250 => (adj*)

251 (little little adiabatic blue)

252 => (random-elt '(a b c d))

253 a

254 => (random-elt '(a b c d))

255 c

256 => (PP*)

257 (on a blue little big woman in the man)

258 => (PP)

259 (on the adiabatic ball)

260 => (sentence)

261 (a big man hit the ball in the woman)

262

263

264 Bad versions for Adj* and PP*:

265

266 ;; Simply incorrect:

267 (defun Adj* ()

268 (one-of '(nil (append (Adj) (Adj*)))

269))

270 adj*

271

272 => (adj*)

273 (nil)

274 => (adj*)

275 (nil)

276 => (adj*)

277 ((append (adj) (adj*)))

278

279 ;; Infinite recursion:

280 (defun Adj* ()

01-10-15 13:31 class6.scm Page 6

281 (one-of (list nil (append (Adj) (Adj*)))

282))

283

284

285 PROBLEMS: Writing new grammar rules becomes complicated.

286

287 ;;; ==============================

288 ;;; ==============================

289

290 II.

291 ==

292 A rule-based solution: Easier to write grammar rules. Worry later about how

293 to use the rules:

294

295 The grammar:

296 Sentence ==> Noun-phrase + verb-phrase

297 Noun-phrase ==> Article + Noun

298 Verb-phrase ==> Verb + noun-phrase

299 Article ==> the, a, ...

300 Noun ==> man, ball, woman, table, ...

301 Verb ==> hit, took, saw, liked, ...

302

303 Each rule is captured as a list. A complex right-hand-side is captured as a

304 list. The grammar is captured as a list of lists.

305

306 (defparameter *simple-grammar*

307 '((sentence -> (noun-phrase verb-phrase))

308 (noun-phrase -> (Article Noun))

309 (verb-phrase -> (Verb noun-phrase))

310 (Article -> the a)

311 (Noun -> man ball woman table)

312 (Verb -> hit took saw liked))

313 "A grammar for a trivial subset of English.")

314

315

316 (defvar *grammar* *simple-grammar*

317 "The grammar used by generate. Initially, this is

318 *simple-grammar*, but we can switch to other grammers.")

319

320 ;;; ==============================

321 The sentences are generated by "parsing" the grammar, and applying its

322 categories. We need functions to parse rules:

323

324 (defun rule-lhs (rule)

325 "The left hand side of a rule."

326 (first rule))

327

328

329 (defun rule-rhs (rule)

330 "The right hand side of a rule."

331 (rest (rest rule)))

332

333

334 (defun rewrites (category)

335 "Return a list of the possible rewrites for this category."

336 (rule-rhs (assoc category *grammar*)))

01-10-15 13:31 class6.scm Page 7

337

338

339 'assoc' is a builty-in function. It takes a "key" and a list of lists. Returns

340 the first list that starts with the key:

341

342 => (assoc 'noun *grammar*)

343 (noun -> man ball woman table)

344 => (assoc 'Noun-phrase *grammar*)

345 (noun-phrase -> (article noun))

346 => (rewrites 'noun-phrase)

347 ((article noun))

348 => (rewrites 'noun)

349 (man ball woman table)

350 => (rewrites 'sentence)

351 ((noun-phrase verb-phrase))

352

353

354 ;;; ==============================

355 ;;; The generate function: 3 cases:

356 ;;; 1. The argument is a list of categories, as in (noun-phrase verb-phrase).

357

358 ;;; All categories must be generated.

359 ;;; 2. The argument is a category that has several possible rewrites.

360 ;;; One category is chosen (in random).

361 ;;; 3. The argument has no possible rewrites -- it is a word. Its list is

362 ;;; returned.

363

364 (defun generate (phrase)

365 "Generate a random sentence or phrase"

366 (cond ((listp phrase)

367 (mappend #'generate phrase))

368 ((rewrites phrase)

369 (generate (random-elt (rewrites phrase))))

370 (t (list phrase))))

371

372 => (generate 'sentence)

373 (the woman saw a man)

374 => (generate (random-elt (rewrites 'sentence)))

375 (the table hit the ball)

376 => (generate '(article noun))

377 (a man)

378 => (generate 'noun-phrase)

379 (the man)

380 => (generate 'verb-phrase)

381 (took a table)

382

383

384 A different version of 'generate', using if:

385

386 (defun generate (phrase)

387 "Generate a random sentence or phrase"

388 (if (listp phrase)

389 (mappend #'generate phrase)

390 (let ((choices (rewrites phrase)))

391 (if (null choices)

392 (list phrase)

01-10-15 13:31 class6.scm Page 8

393 (generate (random-elt choices)))

394)))

395

396 => (generate 'verb-phrase)

397 (hit a man)

398

399

400 The 'let' construct: introduce variables that are not parameters of functions.

401 Never use a variable that is not introduced first!!

402

403

404

405 ;;; ==============================

406 ;;; ==============================

407

408 III.

409 ====

410 Changing the grammar without changing the program:

411

412 (defparameter *bigger-grammar*

413 '((sentence -> (noun-phrase verb-phrase))

414 (noun-phrase -> (Article Adj* Noun PP*) (Name) (Pronoun))

415 (verb-phrase -> (Verb noun-phrase PP*))

416 (PP* -> () (PP PP*))

417 (Adj* -> () (Adj Adj*))

418 (PP -> (Prep noun-phrase))

419 (Prep -> to in by with on)

420 (Adj -> big little blue green adiabatic)

421 (Article -> the a)

422 (Name -> Pat Kim Lee Terry Robin)

423 (Noun -> man ball woman table)

424 (Verb -> hit took saw liked)

425 (Pronoun -> he she it these those that)))

426

427 (setf *grammar* *bigger-grammar*)

428

429 => (generate 'sentence)

430 (he hit terry)

431 => (generate 'sentence)

432 (these hit she)

433 => (generate 'sentence)

434 (the ball by the table in these saw the little table by a ball by a man by terry

435)

436 => (generate 'sentence)

437 (the woman on the big green woman saw a woman in a blue table)

438

439

440

441 EVALUATION OF THE TWO SOLUTIONS:

442 1. Straightforward SOLUTION for the exact task -- DIRECT SOLUTION.

443 2. Straightforward NOTAION (DESCRIPTION) of the problem.

444 The solution comes as an EXTRA step -- DIRECT REPRESENTATION.

445

446 Approach (2) is more flexible: Easier to MODIFY and to EXPAND. Typical to

447 most AI problems.

448

01-10-15 13:31 class6.scm Page 9

449 ;;; ==============================

450 ;;; ==============================

451

452 IV.

453 ====

454 SAME DATA, DIFFERENT PROBLEM:

455

456 TASK: Generate the SYNTAX TREE for a sentence:

457 Instead of: (a woman took a ball)

458 Generate: (sentence (noun-phrase (article A) (noun WOMAN))

459 (verb-phrase (verb TOOK)

460 (noun-phrase (article A) (noun BALL))))

461

462 A solution with approach (1) is hard -- whole rewriting.

463 A solution with approach (2):

464 a. cons the category in front of each rewrite.

465 b. List the results -- mapcar, instead of mappend.

466

467 (defun generate-tree (phrase)

468 "Generate a random sentence or phrase,

469 with a complete parse tree."

470 (cond ((listp phrase)

471 (mapcar #'generate-tree phrase)) ; here is the mapcar.

472 ((rewrites phrase)

473 (cons phrase ; here is the extra cons.

474 (generate-tree (random-elt (rewrites phrase)))))

475 (t (list phrase))))

476

477 => (generate-tree 'Sentence)

478 (sentence (noun-phrase (article a)

479 (adj*)

480 (noun ball)

481 (pp*))

482 (verb-phrase (verb took)

483 (noun-phrase (name kim))

484 (pp* (pp (prep in)

485 (noun-phrase (name lee)))

486 (pp* (pp (prep with)

487 (noun-phrase (name robin)))

488 (pp*)))))

489

490 => (generate-tree 'Sentence)

491 (sentence (noun-phrase (article a)

492 (adj*)

493 (noun table)

494 (pp*))

495 (verb-phrase (verb saw)

496 (noun-phrase (name pat))

497 (pp* (pp (prep with)

498 (noun-phrase (name terry)))

499 (pp* (pp (prep with)

500 (noun-phrase (article the)

501 (adj*) (noun woman)

502 (pp* (pp (prep on)

503 (noun-phrase (article the)

504 (adj*) (noun ball)

01-10-15 13:31 class6.scm Page 10

505 (pp* (pp (prep in)

506 (noun-phrase (pronoun those)))

507

508 (pp*))))

509 (pp* (pp (prep to)

510 (noun-phrase (pronoun it)))

511 (pp*)))))

512 (pp*)))))

513

514

515 ;;; ==============================

516 TASK: Generate ALL possible rewrites of a phrase.

517

518 (defun generate-all (phrase)

519 "Generate a list of all possible expansions of this phrase."

520 (cond ((null phrase) (list nil))

521 ((listp phrase)

522 (combine-all (generate-all (first phrase))

523 (generate-all (rest phrase))))

524 ((rewrites phrase)

525 (mappend #'generate-all (rewrites phrase)))

526 (t (list (list phrase)))))

527

528 (defun combine-all (xlist ylist)

529 "Return a list of lists formed by appending a y to an x.

530 E.g., (combine-all '((a) (b)) '((1) (2)))

531 -> ((A 1) (B 1) (A 2) (B 2))."

532 (mappend #'(lambda (y)

533 (mapcar #'(lambda (x) (append x y)) xlist))

534 ylist))

535

536

537 Work with *simple-grammar*:

538

539 => (generate-all 'Article)

540 ((the) (a))

541 => (generate-all 'Noun)

542 ((man) (ball) (woman) (table))

543 => (generate-all 'noun-phrase)

544 ((the man) (a man) (the ball) (a ball) (the woman) (a woman) (the table)

545 (a table))

546 => (length (generate-all 'sentence))

547 256

548

549

550

551 ***

552 BACK TO MUSIC:

553

554 RHYTHM IN TONAL MUSIC:

555 ~~~~~~~~~~~~~~~~~~~~~~

556

557 Language "words":

558

559 Mdur = {1/8, 1/4, 3/4, ...}

560

01-10-15 13:31 class6.scm Page 11

561 Let TM-dur(M) denote the language of legal durations in rhythms with meter

562 M = <n, 1/m>. We write a GRAMMER G(M) that defines TM-dur(M).

563 G(M) includes: a VOCABULARY, a START CATEGORY, and a set of derivation rules.

564 * The vocabulary is the set of music durations Mdur.

565 * The start category is (Measure . (n . m)).

566 G(M) = (Mdur, n/m, P)

567 where P is the set of derivation rules:

568

569 1. <n . 1/m> --> k1/n * n/m k2/n * n/m ... kl/n * n/m =

570 = k1/m k2/m ... kl/m

571 where k1+k2+...+kl=n

572 2. For a music duration p= s/t> and a natural number q,

573 p --> k1/q * p k2/q * p ... kl/q * p

574 where k1+k2+...+kl=q

575

576 The language of G(M) is the set of all music duration combinations that can be

577 derived from n/m.

578

579

580 rule:

581 lhs -> (implicit . ((create the rhs)))

582

583

584 How to think about these rules?

585 Of course -- we can implement a straightforward constructor...

586

587

588 FIRST SUGGESTION -- implicit right hand side:

589 ~~~

590

591 1. (Measure . (n . m)) ->

592 (implicit . ((lambda(x y)((split "x = k1+...kl")

593 (list k1/y k2/y ... kl/y)))

594 n m))

595

596 2. (Measure . (s . t)) ->

597 (implicit . ((lambda(y)((split "x = k1+...kl")

598 (list k1/x * y k2/x * y ...)))

599 s/t))

600

601

602 PROBLEM: It is not clear how and at what direction we wish to use

603 these rules.

604

605

606 Still another approach

607 SECOND APPROACH -- implement the constrained rules as CONSTRAINT NETWORKS:

608 ~~

609 Advantages: No direction for the implementation -- can be used top

610 down, or bottom up, or both.

611

612 For example, the rule

613

614 For a music duration p= s/t> and a natural number q,

615 p --> k1/q * p k2/q * p ... kl/q * p

616 where k1+k2+...+kl=q

01-10-15 13:31 class6.scm Page 12

617

618 can be implemented as the network:

619

620 -*------- -/---------

621 | m1-|-------|-res d1-|----q

622 p1----pr | | |

623 | m2-|---p | d2-|-k1----|

624 --------- ----------- |

625 |

626 |

627 -*------- -/--------- |

628 | m1-|-------|-res d1-|----q |

629 p2----pr | | | | -+n-----

630 | m2-|---p | d2-|-k2----| | |

631 --------- ----------- |--list-- s-|--q

632 | | |

633 . | --------

634 . |

635 . |

636 |

637 -*------- -/--------- |

638 | m1-|-------|-res d1-|----q |

639 pl----pr | | | |

640 | m2-|---p | d2-|-k2----|

641 --------- ----------- |

642

643 For the rule:

644 <n . 1/m> --> k1/n * n/m k2/n * n/m ... kl/n * n/m =

645 = k1/m k2/m ... kl/m

646 where k1+k2+...+kl=n

647

648 the network is the same, with:

649 q = n

650 p = n/m: -/-------

651 | m1-|---n

652 p----pr |

653 | m2-|---m

654 ---------

655

656 If we abstract the above network as

657 ---------

658 | -|---higher level category p

659 p1---- |

660 | -|---split q

661 p2---- |

662 . | |

663 . | |

664 pl---- |

665 |--------

666

667 then every rule is abstracted as:

668 (rewrite Category) --> (network category) --> a list of output categories.

669

670

671 FORMULATING THE MELODY CONCEPT

672 ==============================

01-10-15 13:31 class6.scm Page 13

673

674 A similar network approach can do.

675

676 ... to be continued.

677

678

679

680

681

682

683

