
Improving the Efficiency of CHA through Parallelization
Miguel Velez and Jason Sawin

University of St. Thomas. St. Paul, MN

Interprocedural Analysis
Interprocedural analysis is a software engineering technique that uses calling

relationships among procedures to analyze an entire program. Researchers and

software engineers rely on such analyses to help them build efficient and safe

programs. There are several algorithms used in this type of analysis that statically

analyze source code to determine the calling relationships and method

reachability in a program. The following algorithms are some of the most studied

and important processes in the field: naïve, CHA[1], RTA[2], and points-to

analysis[3].

Parallel Algorithm
Reachability algorithm:

Parallel algorithm:

• Main thread creates threads that wait for methods to be analyzed and checks the 

worklist for new methods to dispatch.

• When a method is available in the worklist, a child thread analyses it.

• When the worklist is empty, the main thread signals each child thread to 

terminate. All methods in the program were analyzed.

• The worklist, reachable methods list, and several other parts of the algorithm are 

shared resources. They were synchronized to avoid concurrency errors.

Bibliography
[1] J. Dean, D. Grove, and C. Chambers, “Optimizations of object-oriented 

programs using static class hierarchy analysis,” in European Conference on 

Object-Oriented Programming, 1995, pp. 77–101.

[2] D. Bacon and P. Sweeney, “Fast static analysis of C++ virtual function calls,” 

in Conference on Object-Oriented Programming Systems, Languages, and 

Applications, 1996, pp. 324–341.

[3] A. Rountev, B. G. Ryder, and W. Landi, “Data-flow analysis of program 

fragments,” in ACM SIGSOFT Symposium on Foundations of Software 

Engineering, ser. LNCS 1687, 1999, pp. 235–252.

CHA
Fastest and most unreliable algorithm. Uses the type of a variable, together with

the class hierarchy.

The call graph allows us to know which methods are reachable from a specific

method. The type of variable c is not known. Therefore, both getMake() methods

are included. For larger programs where a graph could have many edges, a list of

reachable methods can be returned.

Results
Tested algorithm in various Java programs

• Took advantage of modern multi-core architectures.

• As expected, the more threads used in the analysis, the less time it takes to 

complete it.

• There is an expected threshold. After a certain number of threads, the 

management of them done by the OS slows down the analysis.

main

Driver:getCar()

Car:getMake() Toyota:getMake()

Worklist

Process

New 

methods

Reachable methods list

Method Main Thread

Worklist

Process

New 

methods

Reachable methods list

Method

Main Thread

Process

Method

New 

methods

Thread 1 Thread 2

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25

TI
M
E

THREADS

REACHABILITY ANALYSIS TIMING (JAVA-
CHRONICLE)

7000

7500

8000

8500

9000

9500

10000

0 5 10 15 20 25

TI
M
E

THREADS

REACHABILITY ANALYSIS TIMING (BCF)


