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Interprocedural Analysis
Interprocedural analysis is a software engineering technique that uses calling

relationships among procedures to analyze an entire program. Researchers and

software engineers rely on such analyses to help them build efficient and safe

programs. There are several algorithms used in this type of analysis that statically

analyze source code to determine the calling relationships and method

reachability in a program. The following algorithms are some of the most studied

and important processes in the field: naïve, CHA[1], RTA[2], and points-to

analysis[3].

Parallel Algorithm
Reachability algorithm:

Parallel algorithm:

• Main thread creates threads that wait for methods to be analyzed and checks the 

worklist for new methods to dispatch.

• When a method is available in the worklist, a child thread analyses it.

• When the worklist is empty, the main thread signals each child thread to 

terminate. All methods in the program were analyzed.

• The worklist, reachable methods list, and several other parts of the algorithm are 

shared resources. They were synchronized to avoid concurrency errors.
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CHA
Fastest and most unreliable algorithm. Uses the type of a variable, together with

the class hierarchy.

The call graph allows us to know which methods are reachable from a specific

method. The type of variable c is not known. Therefore, both getMake() methods

are included. For larger programs where a graph could have many edges, a list of

reachable methods can be returned.

Results
Tested algorithm in various Java programs

• Took advantage of modern multi-core architectures.

• As expected, the more threads used in the analysis, the less time it takes to 

complete it.

• There is an expected threshold. After a certain number of threads, the 

management of them done by the OS slows down the analysis.
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