
1

SQL: The Query Language
Part II

15-415, Spring 2003, Lecture 12
R & G Chapter 5

The important thing is not to stop
questioning.

Albert Einstein

Example Instances

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5
95 Bob 3 63.5

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

sid bid day

22 101 10/10/96
95 103 11/12/96

Reserves

Sailors

Boats

Queries With GROUP BY

The target-list contains (i) list of column names &
(ii) terms with aggregate operations (e.g., MIN (S.age)).

– column name list (i) can contain only attributes from
the grouping-list.

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE qualification]
GROUP BY grouping-list

• To generate values for a column based on groups
of rows, use aggregate functions in SELECT
statements with the GROUP BY clause

Group By Examples

SELECT S.rating, AVG (S.age)
FROM Sailors S
GROUP BY S.rating

For each rating, find the average age of the sailors

For each rating find the age of the youngest
sailor with age ≥ 18

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

Conceptual Evaluation
• The cross-product of relation-list is computed, tuples

that fail qualification are discarded, `unnecessary’
fields are deleted, and the remaining tuples are
partitioned into groups by the value of attributes in
grouping-list.

• One answer tuple is generated per qualifying group.

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

1. Form cross product

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

2. Delete unneeded columns,
rows; form groups

3. Perform
Aggregation

rating age
1 33.0
7 35.0
8 55.0
10 35.0

Answer Table

2

Find the number of reservations for
each red boat.

• Grouping over a join of two relations.

SELECT B.bid, COUNT(*)AS numres
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color=‘red’
GROUP BY B.bid

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

1

b.bid b.color r.bid
101 blue 101
102 red 101
103 green 101
104 red 101
101 blue 102
102 red 102
103 green 102
104 red 102

b.bid b.color r.bid

102 red 102

2
b.bid scount

102 1 answer

Queries With GROUP BY and HAVING

• Use the HAVING clause with the GROUP BY clause to
restrict which group-rows are returned in the result
set

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Conceptual Evaluation

• Form groups as before.
• The group-qualification is then applied to eliminate

some groups.
– Expressions in group-qualification must have a

single value per group!
– That is, attributes in group-qualification must be

arguments of an aggregate op or must also appear
in the grouping-list. (SQL does not exploit primary
key semantics here!)

• One answer tuple is generated per qualifying group.

Find the age of the youngest sailor with age ≥
18, for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

rating
7 35.0

Answer relation

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

2

rating m-age count
1 33.0 1
7 35.0 2
8 55.0 1
10 35.0 1

3

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

• Example in book, not using EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without
...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

3

• Can you do this using Group By
and Having?

SELECT S.name
FROM Sailors S, reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING

COUNT(DISTINCT R.bid) =
(Select COUNT (*) FROM Boats)

Find sailors who’ve reserved all boats.

Note: must have both sid and name in the GROUP BY
clause. Why?

SELECT S.name, S.sid
FROM Sailors S, reserves R
WHERE S.sid = r.sid

GROUP BY S.name, S.sid
HAVING

COUNT(DISTINCT R.bid) =
Select COUNT (*) FROM Boats

s.name s.sid r.sid r.bid
Dustin 22 22 101
Lubber 31 22 101
Bob 95 22 101
Dustin 22 95 102
Lubber 31 95 102
Bob 95 95 102

s.name s.sid bcount
Dustin 22 1
Bob 95 1

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Count (*) from boats = 4

Apply having clause to groups

s.name s.sid

Sorting the Results of a Query

• ORDER BY column [ASC | DESC] [, ...]

• Extra reporting power obtained by combining
with aggregation.

SELECT S.rating, S.sname, S.age
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid AND B.color=‘red’
ORDER BY S.rating, S.sname;

SELECT S.sid, COUNT (*) AS redrescnt
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid AND B.color=‘red’
GROUP BY S.sid
ORDER BY redrescnt DESC;

INSERT

INSERT INTO Boats VALUES (105, ‘Clipper’, ‘purple’)
INSERT INTO Boats (bid, color) VALUES (99, ‘yellow’)

You can also do a “bulk insert” of values from one
table into another:

INSERT INTO TEMP(bid)
SELECT r.bid FROM Reserves R WHERE r.sid = 22;

(must be type compatible)

INSERT [INTO] table_name [(column_list)]
VALUES (value_list)

INSERT [INTO] table_name [(column_list)]
<select statement>

DELETE & UPDATE

DELETE FROM Boats WHERE color = ‘red’

DELETE FROM Boats b
WHERE b. bid =

(SELECT r.bid FROM Reserves R WHERE r.sid = 22)

Can also modify tuples using UPDATE statement.
UPDATE Boats
SET Color = “green”
WHERE bid = 103;

DELETE [FROM] table_name
[WHERE qualification]

Null Values

• Field values in a tuple are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).
– SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:
– Special operators needed to check if value is/is not null.
– Is rating>8 true or false when rating is equal to null? What

about AND, OR and NOT connectives?
– We need a 3-valued logic (true, false and unknown).
– Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to true.)
– New operators (in particular, outer joins) possible/needed.

4

Joins

Explicit join semantics needed unless it is an INNER join
(INNER is default)

SELECT (column_list)
FROM table_name

[INNER | {LEFT |RIGHT | FULL } OUTER] JOIN table_name
ON qualification_list

WHERE …

Inner Join

Only the rows that match the search conditions are
returned.

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

Returns only those sailors who have reserved boats
SQL-92 also allows:

SELECT s.sid, s.name, r.bid
FROM Sailors s NATURAL JOIN Reserves r

“NATURAL” means equi-join for each pair of attributes
with the same name (may need to rename with “AS”)

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

s.sid s.name r.bid
22 Dustin 101
95 Bob 103

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day

22 101 10/10/96
95 103 11/12/96

Left Outer Join

Left Outer Join returns all matched rows, plus all
unmatched rows from the table on the left of
the join clause

(use nulls in fields of non-matching tuples)

SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid

Returns all sailors & information on whether they
have reserved boats

SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid

s.sid s.name r.bid
22 Dustin 101
95 Bob 103
31 Lubber

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day

22 101 10/10/96
95 103 11/12/96

Right Outer Join

Right Outer Join returns all matched rows, plus
all unmatched rows from the table on the right
of the join clause

SELECT r.sid, b.bid, b.name
FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid

Returns all boats & information on which ones
are reserved.

5

SELECT r.sid, b.bid, b.name
FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid

r.sid b.bid b.name
22 101 Interlake

102 Interlake
95 103 Clipper

104 Marine

sid bid day

22 101 10/10/96
95 103 11/12/96

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Full Outer Join

Full Outer Join returns all (matched or
unmatched) rows from the tables on both
sides of the join clause

SELECT r.sid, b.bid, b.name
FROM Reserves r FULL OUTER JOIN Boats b
ON r.bid = b.bid

Returns all boats & all information on
reservations

SELECT r.sid, b.bid, b.name
FROM Reserves r FULL OUTER JOIN Boats b
ON r.bid = b.bid

r.sid b.bid b.name
22 101 Interlake

102 Interlake
95 103 Clipper

104 Marine
Note: in this case it is the same as the ROJ because
bid is a foreign key in reserves, so all reservations must
have a corresponding tuple in boats.

sid bid day

22 101 10/10/96
95 103 11/12/96

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

DDL – Create Table
• CREATE TABLE CREATE TABLE CREATE TABLE CREATE TABLE table_name table_name table_name table_name

({ ({ ({ ({ column_namecolumn_namecolumn_namecolumn_name data_typedata_typedata_typedata_type [DEFAULT [DEFAULT [DEFAULT [DEFAULT default_default_default_default_exprexprexprexpr] [] [] [] [
column_constraintcolumn_constraintcolumn_constraintcolumn_constraint [, ...]] | [, ...]] | [, ...]] | [, ...]] | table_constrainttable_constrainttable_constrainttable_constraint } [, ...])} [, ...])} [, ...])} [, ...])

• Data Types (PostgreSQL) include:Data Types (PostgreSQL) include:Data Types (PostgreSQL) include:Data Types (PostgreSQL) include:
character(n) – fixed-length character string
character varying(n) – variable-length character string
smallint, integer, bigint, numeric, real, double precision
date, time, timestamp, …
serial - unique ID for indexing and cross reference
…

• PostgreSQL also allows PostgreSQL also allows PostgreSQL also allows PostgreSQL also allows OIDsOIDsOIDsOIDs, arrays, inheritance, rules…, arrays, inheritance, rules…, arrays, inheritance, rules…, arrays, inheritance, rules…
conformance to the SQL-1999 standard is variable so we won’t use

these in the project.

Create Table (w/column constraints)
• CREATE TABLE CREATE TABLE CREATE TABLE CREATE TABLE table_name table_name table_name table_name

({ ({ ({ ({ column_namecolumn_namecolumn_namecolumn_name data_typedata_typedata_typedata_type [DEFAULT [DEFAULT [DEFAULT [DEFAULT default_default_default_default_exprexprexprexpr] [] [] [] [
column_constraintcolumn_constraintcolumn_constraintcolumn_constraint [, ...][, ...][, ...][, ...]] |] |] |] | table_constrainttable_constrainttable_constrainttable_constraint } [, ...])} [, ...])} [, ...])} [, ...])

Column Constraints:Column Constraints:Column Constraints:Column Constraints:
• [CONSTRAINT [CONSTRAINT [CONSTRAINT [CONSTRAINT constraint_nameconstraint_nameconstraint_nameconstraint_name]]]]

{ NOT NULL | NULL | UNIQUE | PRIMARY KEY | { NOT NULL | NULL | UNIQUE | PRIMARY KEY | { NOT NULL | NULL | UNIQUE | PRIMARY KEY | { NOT NULL | NULL | UNIQUE | PRIMARY KEY |
CHECK (CHECK (CHECK (CHECK (expressionexpressionexpressionexpression) |) |) |) |
REFERENCES REFERENCES REFERENCES REFERENCES reftablereftablereftablereftable [([([([(refcolumnrefcolumnrefcolumnrefcolumn)] [ON DELETE)] [ON DELETE)] [ON DELETE)] [ON DELETE
actionactionactionaction] [ON UPDATE] [ON UPDATE] [ON UPDATE] [ON UPDATE actionactionactionaction] }] }] }] }

action action action action is one of:is one of:is one of:is one of:
NO ACTION, CASCADE, SET NULL, SET DEFAULTNO ACTION, CASCADE, SET NULL, SET DEFAULTNO ACTION, CASCADE, SET NULL, SET DEFAULTNO ACTION, CASCADE, SET NULL, SET DEFAULT

expressionexpressionexpressionexpression for column constraint must produce a for column constraint must produce a for column constraint must produce a for column constraint must produce a boolean boolean boolean boolean
result and reference that column’s value only.result and reference that column’s value only.result and reference that column’s value only.result and reference that column’s value only.

Create Table (w/table constraints)
• CREATE TABLE CREATE TABLE CREATE TABLE CREATE TABLE table_name table_name table_name table_name

({ ({ ({ ({ column_namecolumn_namecolumn_namecolumn_name data_typedata_typedata_typedata_type [DEFAULT [DEFAULT [DEFAULT [DEFAULT default_default_default_default_exprexprexprexpr] [] [] [] [
column_constraintcolumn_constraintcolumn_constraintcolumn_constraint [, ...]] | [, ...]] | [, ...]] | [, ...]] | table_constrainttable_constrainttable_constrainttable_constraint } [, ...])} [, ...])} [, ...])} [, ...])

Table Constraints:Table Constraints:Table Constraints:Table Constraints:
• [CONSTRAINT [CONSTRAINT [CONSTRAINT [CONSTRAINT constraint_nameconstraint_nameconstraint_nameconstraint_name]]]]

{ UNIQUE ({ UNIQUE ({ UNIQUE ({ UNIQUE (column_namecolumn_namecolumn_namecolumn_name [, ...]) | [, ...]) | [, ...]) | [, ...]) |
PRIMARY KEY (PRIMARY KEY (PRIMARY KEY (PRIMARY KEY (column_namecolumn_namecolumn_namecolumn_name [, ...]) | [, ...]) | [, ...]) | [, ...]) |
CHECK (CHECK (CHECK (CHECK (expressionexpressionexpressionexpression) |) |) |) |
FOREIGN KEY (FOREIGN KEY (FOREIGN KEY (FOREIGN KEY (column_namecolumn_namecolumn_namecolumn_name [, ...]) REFERENCES[, ...]) REFERENCES[, ...]) REFERENCES[, ...]) REFERENCES
reftablereftablereftablereftable [([([([(refcolumnrefcolumnrefcolumnrefcolumn [, ...])] [ON DELETE [, ...])] [ON DELETE [, ...])] [ON DELETE [, ...])] [ON DELETE actionactionactionaction]]]]
[ON UPDATE [ON UPDATE [ON UPDATE [ON UPDATE actionactionactionaction] }] }] }] }

Here, Here, Here, Here, expressions, keys, etc can include expressions, keys, etc can include expressions, keys, etc can include expressions, keys, etc can include multilple multilple multilple multilple columnscolumnscolumnscolumns

6

Create Table (Examples)
CREATE TABLE films (

code CHAR(5) PRIMARY KEY,
title VARCHAR(40),
did DECIMAL(3),
date_prod DATE,
kind VARCHAR(10),

CONSTRAINT production UNIQUE(date_prod)
FOREIGN KEY did REFERENCES distributors

ON DELETE NO ACTION
);
CREATE TABLE distributors (

did DECIMAL(3) PRIMARY KEY,
name VARCHAR(40)
CONSTRAINT con1 CHECK (did > 100 AND name <> ‘ ’)

);

Views

CREATE VIEW view_name
AS select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

SELECT bname, scount
FROM Reds R, Boats B
WHERE R.bid=B.bid

AND scount < 10

b.bid scount
102 1 Reds

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Views Instead of Relations in Queries Discretionary Access Control
GRANT privileges ON object TO users
[WITH GRANT OPTION]

• Object can be a Table or a View
• Privileges can be:

• Select
• Insert
• Delete
• References (cols) – allow to create a foreign

key that references the specified column(s)
• All

• Can later be REVOKEd
• Users can be single users or groups
• See Chapter 17 for more details.

