
1

SQL: The Query Language
Part 3

15-415, Spring 2003, Lecture 13
R &G - Chapter 6

It is not every question
that deserves an answer.

Publius Syrus. 42 B. C.

Two more important topics

• Constraints

• Triggers

2

Integrity Constraints (Review)

• An IC describes conditions that every legal instance
of a relation must satisfy.
– Inserts/deletes/updates that violate IC’s are disallowed.
– Can be used to ensure application semantics (e.g., sid is

a key), or prevent inconsistencies (e.g., sname has to be
a string, age must be < 200)

• Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
– Domain constraints: Field values must be of right type.

Always enforced.
– Primary key and foreign key constraints: you know them.

General Constraints

• Useful when
more general ICs
than keys are
involved.

• Can use queries
to express
constraint.

• Checked on insert
or update.

• Constraints can
be named.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10))
CREATE TABLE Reserves

(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

3

Constraints Over Multiple Relations
CREATE TABLE Sailors

(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM

Boats B) < 100)

• Awkward and
wrong!

• Only checks
sailors!

• Only required to
hold if the
associated table
is non-empty.

• ASSERTION is the
right solution;
not associated
with either table.

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid)
FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Or, Use a Trigger

• Trigger: procedure that starts automatically if
specified changes occur to the DBMS

• Three parts:
– Event (activates the trigger)
– Condition (tests whether the triggers should run)
– Action (what happens if the trigger runs)

• Triggers (in some form) are supported by most
DBMSs; Assertions are not.

• Support for triggers is defined in the SQL:1999
standard.

4

Triggers

• Cannot be called directly – initiated by events on the
database.

• Can be synchronous or asynchronous with respect to
the transaction that causes it to be fired.

CREATE TRIGGER trigger_name
ON TABLE
{FOR {[INSERT][,][UPDATE][,][DELETE]}
[WITH APPEND]
AS
sql-statements

Triggers: Example
CREATE TRIGGER member_delete
ON member FOR DELETE
AS
IF (Select COUNT (*) FROM loan INNER JOIN member

ON loan.member_no = deleted.member_no) > 0
BEGIN

PRINT ‘ERROR - member has books on loan.’
ROLLBACK TRANSACTION

END
ELSE
DELETE reservation WHERE reservation.member_no =

deleted.member_no

5

Summary: Triggers, Assertions,
Constraints

• Very vendor-specific (although standard has been
developed).

• Triggers vs. Contraints and Assertions:
– Triggers are “operational”, others are declarative.

• Triggers can make the system hard to understand if
not used with caution.
– ordering of multiple triggers
– recursive/chain triggers

• Triggers can be hard to optimize.
• But, triggers are also very powerful.
• Use to create high-performance, “active” databases.

Writing Applications with SQL

• SQL is not a general purpose programming
language.
+ Tailored for data retrieval and manipulation
+ Relatively easy to optimize and parallelize
- Can’t write entire apps in SQL alone

Options:
Make the query language “turing complete”

Avoids the “impedance mismatch”
but, loses some of the advantages of relational langs.

Allow SQL to be embedded in regular programming
languages.

Q: What needs to be solved to make the latter
approach work?

6

Embedded SQL

• SQL commands can be called from within a host
language (e.g., C or COBOL) program.

• SQL statements can refer to host variables (plus
special status variables SQLSTATE, SQLERROR).
– Standard includes mapping of SQL data types to

various PL data types.

• Must be able to connect to the right DB.
• Need compiler preprocessing or a preprocessor

EXEC SQL SELECT S.sname, S.age
INTO :c_sname,:c_age
FROM Sailors S
WHERE S.sid = :c_sid

Cursors

• Previous query worked because SID is a key.
• But, in general, SQL relations are (multi-) sets of

records, with no a priori bound on the number of
records. No such data structure in C.
– SQL supports cursors to handle this.

• Can declare a cursor on a relation or query
statement (which generates a relation).

• Can open a cursor, and repeatedly fetch a tuple
(which moves the cursor), until all tuples have been
retrieved.

• Can also modify/delete tuple pointed to by a cursor.

7

Cursor Syntax

• INSENSITIVE means you see a “private” copy
– You don’t see updates of other transactions after open

• SCROLL allows flexible positioning of cursor
– can use different variants of “Fetch”

• READ ONLY & UPDATE control underlying semantics
– For updatable cursors can modify/delete CURRENT

DECLARE cursor-name [INSENSITIVE] [SCROLL] CURSOR
FOR select-statement
[FOR {READ ONLY | UPDATE]

FETCH Syntax

• If the cursor is not scrollable, then can only use
NEXT (which is the default).

FETCH
[NEXT | PRIOR | FIRST | LAST | ABSOLUTE {n} | RELATIVE {n}]
FROM cursor-name INTO variable_names

8

Cursor Example

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_minrating;

OPEN sinfo;

FETCH sinfo INTO :c_sname, :c_age;

Embedding SQL in C: An Example
char SQLSTATE[6];

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20]; short c_minrating; float c_age;

EXEC SQL END DECLARE SECTION

c_minrating = random();

EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age FROM Sailors S

WHERE S.rating > :c_minrating

ORDER BY S.sname;

EXEC SQL OPEN sinfo;

do {

EXEC SQL FETCH sinfo INTO :c_sname, :c_age;

printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);

EXEC SQL CLOSE sinfo;

9

Dynamic SQL

• Previous example showed how to parameterize a fixed
query. What if you don’t know the query to be run at
the time you are writing your program?

• Use Dynamic SQL to construct a query on the fly:
char c_sqlstring[] = “DELETE FROM Sailors Where
rating > 5”;

EXEC SQL PREPARE readytogo FROM :c_sqlstring;

EXEC SQL EXECUTE readytogo;

• Question: How does the efficiency of this compare
with that of the embedded case shown before?

• Note:It’s trickier if you want to process the answer
within the program rather than just print it out….

Stored Procedures

• Pre-compiles and stores procedures
• Vendor-specific programming language in addition to

SQL Statements

CREATE PROCEDURE overdue_books
AS
SELECT * FROM loan WHERE due_date < getdate()

EXEC overdue_books

CREATE PROCEDURE procedure_name {parameter_list}
AS
sql-statement

EXEC procedure_name {parameter_list}

10

Database APIs: alternative to
embedding

• Rather than modify compiler, add a library
with database calls (API)
– special procedures/objects
– passes SQL strings from language, presents result

sets in a language-friendly way
– Microsoft’s ODBC becoming C/C++ standard on

Windows
– Sun’s JDBC a Java equivalent
– For Perl there is DBI or “oraPerl”
– Mostly DBMS-neutral (or at least they try to hide

the complexities of dealing with different database
systems).

Architecture

• a “driver” traps the calls and translates them into DBMS-
specific code

– Different levels of drivers provide functionality/performance
tradeoffs

• database can be across a network
• Same program can be used (in theory) to access multiple

database systems – by using different drivers.
• Data source may not even be an SQL database!

Application

ODBC driver

Data Source

11

Visual C++ ODBC (from microsoft.com)

Visual C++ provides ODBC drivers for the following databases:

* SQL Server

* Microsoft Access

* Microsoft FoxPro

* Microsoft Excel

* dBASE

* Paradox

* Oracle

* Text files

SQL API in Java (JDBC)

Connection con = // connect

DriverManager.getConnection(url, ”login", ”pass");

Statement stmt = con.createStatement(); // set up stmt

String query = "SELECT COF_NAME, PRICE FROM COFFEES";

ResultSet rs = stmt.executeQuery(query);

try { // handle exceptions

// loop through result tuples

while (rs.next()) {

String s = rs.getString("COF_NAME");

Float n = rs.getFloat("PRICE");

System.out.println(s + " " + n);

}

} catch(SQLException ex) {

System.out.println(ex.getMessage ()

+ ex.getSQLState () + ex.getErrorCode ());

}

12

ODBC Code Sample
TRY

{
AllocStatusArrays();

// call the ODBC catalog function with data member params
AFX_SQL_ASYNC(this, (::SQLTables)(m_hstmt,

(m_strQualifierParam.IsEmpty()? (UCHAR FAR *)NULL:(UCHAR FAR *)(const
char*)m_strTypeParam), SQL_NTS));

if (!Check(nRetCode))
ThrowDBException(nRetCode, m_hstmt);

// Allocate memory and cache info
AllocAndCacheFieldInfo();
AllocRowset();

// Fetch the first row of data
MoveNext();

// If EOF, result set is empty, set BOF as well
m_bBOF = m_bEOF;

}

Perl DBI Sample (we use PHP instead)
use DBI;
my $dbh = DBI->connect('DBI:Oracle:payroll')
or die "Couldn't connect to database: " . DBI->errstr;
my $sth = $dbh->prepare('SELECT * FROM people WHERE lastname = ?')

or die "Couldn't prepare statement: " . $dbh->errstr;
print "Enter name> ";
while ($lastname = <>) { # Read input from the user

my @data;
chomp $lastname;
$sth->execute($lastname) # Execute the query

or die "Couldn't execute statement: " . $sth->errstr;
Read the matching records and print them out
while (@data = $sth->fetchrow_array()) {

my $firstname = $data[1];
my $id = $data[2];
print "\t$id: $firstname $lastname\n";

}
if ($sth->rows == 0) {

print "No names matched `$lastname'.\n\n";
}
print "\n";
print "Enter name> ";

}

13

API Summary
APIs are needed to interface DBMSs to

programming languages

• Embedded SQL uses “native drivers” and is
usually faster but less standard

• ODBC used to be Microsoft-specific in practice.

• JDBC is becoming the standard for Java

• Scripting languages (PHP, Perl, JSP) are
becoming the preferred technique for web-based
systems.

