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Implementation of 
Relational Operations

15-415, Spring 2003, lecture 14
R&G - Chapters 12 and 14

First comes thought; then 
organization of that thought, into 
ideas and plans; then                       
transformation of those plans into 
reality. The beginning, as you will 
observe, is in your imagination.

Napolean Hill

Introduction
• We’ve covered the basic underlying storage, 

buffering, and indexing technology.
– Now we can move on to query processing.

• Some database operations are EXPENSIVE
• Can greatly improve performance by being “smart”

– e.g., can speed up 1,000,000x over naïve approach
• Main weapons are:

1. clever implementation techniques for operators
2. exploiting “equivalencies” of relational operators
3. using statistics and cost models to choose among these.

A Really Bad Query Optimizer

• For each Select-From-Where query block
– Create a plan that:

• Forms the cartesian product 
of the FROM clause

• Applies the WHERE clause
• Incredibly inefficient

– Huge intermediate results!

• Then, as needed:
– Apply the GROUP BY clause
– Apply the HAVING clause
– Apply any projections and output expressions
– Apply duplicate elimination and/or ORDER BY

×
σpredicates
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…

Cost-based Query Sub-System
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Query Optimizer

Plan 
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Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

The Query Optimization Game
• “Optimizer” is a bit of a misnomer…
• Goal is to pick a “good” (i.e., low expected 

cost) plan.
– Involves choosing access methods, physical 

operators, operator orders, …
– Notion of cost is based on an abstract “cost 

model”
• Roadmap for this topic:

– First: basic operators
– Then: joins
– After that: optimizing multiple operators

Relational Operations
• We will consider how to implement:

– Selection (  σ )    Selects a subset of rows from relation.
– Projection ( π )   Deletes unwanted columns from relation.
– Join ( × )  Allows us to combine two relations.
– Set-difference ( - )  Tuples in reln. 1, but not in reln. 2.
– Union (  ∪ )  Tuples in reln. 1 and in reln. 2.
– Aggregation (SUM, MIN, etc.) and GROUP BY

• Since each op returns a relation, ops can be composed!  
After we cover the operations, we will discuss how to 
optimize queries formed by composing them.
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Schema for Examples

• Similar to old schema; rname added for variations.
• Sailors:

– Each tuple is 50 bytes long,  80 tuples per page, 500 pages. 
• Reserves:

– Each tuple is 40 bytes long,  100 tuples per page, 1000 
pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Simple Selections

• Of the form
• Question: how best to perform?  Depends on:

– what indexes/access paths are available
– what is the expected size of the result (in terms of 

number of tuples and/or number of pages)
• Size of result approximated as 

size of R * reduction factor
– “reduction factor” is usually called selectivity.
– estimate of reduction factors is based on statistics – we 

will discuss shortly.

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

σ R a ttr va lu eo p R. ( )

Alternatives for Simple Selections

• With no index, unsorted:  
– Must essentially scan the whole relation
– cost is M (#pages in R). For “reserves” = 1000 I/Os.

• With no index, sorted:
– cost of binary search + number of pages containing 

results.  
– For reserves = 10 I/Os + selectivity*#pages

• With an index on selection attribute:  
– Use index to find qualifying data entries, 
– then retrieve corresponding data records.  
– (Hash index useful only for equality selections.) 

Using an Index for Selections
• Cost depends on #qualifying tuples, and clustering.

– Cost:
• finding qualifying data entries (typically small) 
• plus cost of retrieving records (could be large w/o 

clustering).
– In example “reserves” relation, if 10% of tuples qualify  

(100 pages, 10000 tuples).  
• With a clustered index, cost is little more than 100 I/Os;
• if unclustered, could be up to 10000 I/Os! unless…

Selections using Index (cont)
• Important refinement for unclustered indexes:  

1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.  This ensures that each data 

page is looked at just once (though # of such 
pages likely to be higher than with clustering). 

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED
UNCLUSTERED

General Selection Conditions

• Such selection conditions are first converted to 
conjunctive normal form (CNF):
– (day<8/9/94 OR bid=5 OR sid=3 ) AND

(rname=‘Paul’ OR bid=5 OR sid=3) 
• We only discuss the case with no ORs (a conjunction of 

terms of the form attr op value).
• A B-tree index matches (a conjunction of) terms that 

involve only attributes in a prefix of the search key.
– Index on <a, b, c>  matches a=5 AND b= 3, but not b=3.

• For Hash index, must have all attributes in search key

! (day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3
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Two Approaches to General Selections

• First approach: Find the most selective access path, 
retrieve tuples using it, and apply any remaining terms 
that don’t match the index:
– Most selective access path: An index or file scan that we 

estimate will require the fewest page I/Os.
– Terms that match this index reduce the number of tuples 

retrieved; other terms are used to discard some retrieved 
tuples, but do not affect number of tuples/pages fetched.

Most Selective Index - Example

• Consider day < 8/9/94 AND bid=5 AND sid=3.
• A B+ tree index on day can be used;

– then, bid=5 and sid=3 must be checked 
for each retrieved tuple.  

• Similarly, a hash index on <bid, sid> could be 
used; 
– Then, day<8/9/94 must be checked.

• How about a B+tree on <rname,day>?
• How about a B+tree on <day, rname>?
• How about a Hash index on <day, rname>?

Intersection of Rids
• Second approach: if we have 2 or more matching 

indexes (w/Alternatives (2) or (3) for data entries):
– Get sets of rids of data records using each matching index.
– Then intersect these sets of rids.
– Retrieve the records and apply any remaining terms.
– Consider day<8/9/94 AND bid=5 AND sid=3. With a B+ 

tree index on day and an index on sid, we can retrieve rids 
of records satisfying day<8/9/94 using the first, rids of
recs satisfying sid=3 using the second, intersect, retrieve 
records and check bid=5.

– Note: commercial systems use various tricks to do this:
• bit maps, bloom filters, index joins

The Halloween Problem – An Aside…

• Story from the early days of System R.
• While testing the optimizer on 10/31/75(?), 

the following update was run:

UPDATE payroll

SET salary = salary*1.1

WHERE salary > 20K;

• AND IT NEVER STOPPED!

• Can you guess why??? (hint: it was an 
optimizer bug…)

Schema for Examples

• Similar to old schema; rname added for variations.
• Sailors:

– Each tuple is 50 bytes long,  80 tuples per page, 500 pages.
– N=500, pS=80. 

• Reserves:
– Each tuple is 40 bytes long,  100 tuples per page, 1000 

pages.
– M=1000, pR=100.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

The Projection Operation
• Issue is removing duplicates.
• Basic approach is to use sorting

– 1. Scan R, extract only the needed attrs (why do this first?)
– 2. Sort the resulting set
– 3. Remove adjacent duplicates
– Cost: Reserves with size ratio 0.25 = 250 pages.  With 20 

buffer pages can sort in 2 passes, so 
1000 +250 + 2 * 2 * 250 + 250 = 2500 I/Os

• Can improve by modifying external sort algorithm  
(see chapter 13):
– Modify Pass 0 of external sort to eliminate unwanted fields.
– Modify merging passes to eliminate duplicates.
– Cost: for above case: read 1000 pages, write out 250 in 

runs of 40 pages, merge runs = 1000 + 250 +250 = 1500.   

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R
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Projection Based on Hashing

• Partitioning phase:  Read R using one input buffer.  For 
each tuple, discard unwanted fields, apply hash 
function h1 to choose one of B-1 output buffers.
– Result is B-1 partitions (of tuples with no unwanted fields).  

2 tuples from different partitions guaranteed to be distinct.

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

DupElim with Hashing (continued)

• Duplicate elimination phase:  For each partition, 
read it and build an in-memory hash table, using 
hash fn h2 (<> h1) on all fields, while discarding 
duplicates.
– If partition does not fit in memory, can apply hash-

based projection algorithm recursively to this partition.
• Cost:  For previous case

– assuming partitions fit in memory (i.e. #bufs >= square 
root of the #of pages of projected tuples)

– read 1000 pages and write out partitions of projected 
tuples (250 pages)

– Do dup elim on each partition (total 250 page reads)
– Total : 1500 I/Os.

Discussion of Projection
• Sort-based approach is the standard; better handling of 

skew and result is sorted.  
• If enough buffers, both have same I/O cost: M + 2T  

where M is #pgs in R, T is #pgs of R with unneeded 
attributes removed.
– Although many systems don’t use the specialized sort.

• If an index on the relation contains all wanted 
attributes in its search key, can do index-only scan.
– Apply projection techniques to data entries (much smaller!)

• If an ordered (i.e., tree) index contains all wanted 
attributes as prefix of search key, can do even better:
– Retrieve data entries in order (index-only scan), discard 

unwanted fields, compare adjacent tuples to check for 
duplicates.

Joins

• Joins are very common.
• Joins can be very expensive (cross product in 

worst case).
• Many approaches to reduce join cost.

Equality Joins With One Join Column

• In algebra: R       S.  Common!  Must be carefully 
optimized.  R ×××× S is large; so, R ×××× S followed by a 
selection is inefficient.

• Remember, join is associative and commutative.
• Assume:

– M pages in R, pR tuples per page.
– N pages in S, pS tuples per page.
– In our examples, R is Reserves and S is Sailors.

• We will consider more complex join conditions later.
• Cost metric :  # of I/Os.  We will ignore output costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

><

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Simple Nested Loops Join

• For each tuple in the outer relation R, we scan the 
entire inner relation S. 

• How much does this Cost?
• (pR * M) * N + M  = 100*1000*500 + 1000 I/Os.

– At 10ms/IO, Total: ???
• What if smaller relation (S) was outer?

• What assumptions are being made here?

Q: What is cost if one relation can fit entirely in memory?
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Page-Oriented Nested Loops Join

• For each page of R, get each page of S, and write out 
matching pairs of tuples <r, s>, where r is in R-page 
and S is in S-page.

• What is the cost of this approach?

• M*N + M= 1000*500 + 1000
– If smaller relation (S) is outer, cost = 500*1000 + 500

foreach page bR in R do
foreach page bS in S do

foreach tuple r in bR do
foreach tuple s in bSdo

if ri == sj then add <r, s> to result

Index Nested Loops Join

• If there is an index on the join column of one relation 
(say S), can make it the inner and exploit the index.
– Cost:  M + ( (M*pR) * cost of finding matching S tuples) 

• For each R tuple, cost of probing S index is about 1.2 
for hash index, 2-4 for B+ tree.  Cost of then finding S 
tuples (assuming Alt. (2) or (3) for data entries) 
depends on clustering.

• Clustered index:  1 I/O per page of matching S tuples.
• Unclustered: up to 1 I/O per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result

Examples of Index Nested Loops
• Hash-index (Alt. 2) on sid of Sailors (as inner):

– Scan Reserves:  1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple:  1.2 I/Os to get data entry in 

index, plus 1 I/O to get (the exactly one) matching 
Sailors tuple.  Total:  

• Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors:  500 page I/Os, 80*500 tuples.
– For each Sailors tuple:  1.2 I/Os to find index page with 

data entries, plus cost of retrieving matching Reserves 
tuples.  Assuming uniform distribution, 2.5 reservations 
per sailor (100,000 / 40,000).  Cost of retrieving them is 
1 or 2.5 I/Os depending on whether the index is 
clustered.

– Totals:

Block Nested Loops Join
• Page-oriented NL doesn’t exploit extra buffers.
• Alternative approach: Use one page as an input 

buffer for scanning the inner S, one page as the 
output buffer, and use all remaining pages to hold 
``block’’ of outer R.

• For each matching tuple r in R-block, s in S-page, 
add <r, s> to result.  Then read next R-block, scan 
S, etc.

. . .

. . .

R & S
block of R tuples
(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Examples of Block Nested Loops
• Cost:  Scan of outer +  #outer blocks * scan of 

inner
– #outer blocks =

• With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
– Per block of R, we scan Sailors (S);  10*500 I/Os.
– If space for just 90 pages of R, we would scan S 12 

times.
• With 100-page block of Sailors as outer:

– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves;   5*1000 I/Os.

• With sequential reads considered, analysis 
changes:  may be best to divide buffers evenly 
between R and S.

 # /of pages of outer blocksize

Sort-Merge Join  (R     S)
• Sort R and S on the join column, then scan them to do a 

``merge’’ (on join col.), and output result tuples.
• Useful if

– one or both inputs are already sorted on join attribute(s)
– output is required to be sorted on join attributes(s)

• “Merge” phase can require some back tracking if 
duplicate values appear in join column

• R is scanned once; each S group is scanned once per 
matching R tuple.  (Multiple scans of an S group will 
probably find needed pages in buffer.)

><i=j
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Example of Sort-Merge Join

• Cost:  Sort R +Sort S + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

• With 35, 100 or 300 buffer pages, both Reserves and 
Sailors can be sorted in 2 passes; total join cost: 7500. 

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost:  2500 to 15000 I/Os)

Refinement of Sort-Merge Join
• We can combine the merging phases in the sorting of R 

and S with the merging required for the join.
– Allocate 1 page per run of each relation, and `merge’ while 

checking the join condition 
– With B >       , where L is the size of the larger relation, 

using the sorting refinement that produces runs of length 
2B in Pass 0, #runs of each relation is < B/2.

– Cost:  read+write each relation in Pass 0 + read each 
relation in (only) merging pass  (+ writing of result tuples).

– In example, cost goes down from 7500 to 4500 I/Os.
• In practice, cost of sort-merge join, like the cost of 

external sorting, is linear.

L

Hash-Join
• Partition both relations 

using hash fn h:  R 
tuples in partition i will 
only match S tuples in 
partition i.

" Read in a partition of R, 
hash it using h2 (<> 
h!). Scan matching 
partition of S, probe 
hash table for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Observations on Hash-Join

• #partitions k < B, and B-1 > size of largest partition to 
be held in memory.  Assuming uniformly sized 
partitions, and maximizing k, we get:
k= B-1,  and M/(B-1) < B-2,  i.e.,  B must be > 

• Since we build an in-memory hash table to speed up 
the matching of tuples in the second phase, a little 
more memory is needed.

• If the hash function does not partition uniformly, one 
or more R partitions may not fit in memory.  Can apply 
hash-join technique recursively to do the join of this R-
partition with corresponding S-partition.

M

Cost of Hash-Join

• In partitioning phase, read+write both relns; 2(M+N). 
In matching phase, read both relns; M+N I/Os.

• In our running example, this is a total of 4500 I/Os.
• Sort-Merge Join vs. Hash Join:

– Given a minimum amount of memory (what is this, for 
each?) both have a cost of 3(M+N) I/Os.  Hash Join 
superior on this count if relation sizes differ greatly.  Also, 
Hash Join shown to be highly parallelizable.

– Sort-Merge less sensitive to data skew; result is sorted.

General Join Conditions
• Equalities over several attributes (e.g.,  R.sid=S.sid AND

R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or 

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on combination 

of the two join columns.
• Inequality conditions (e.g.,  R.rname < S.sname):

– For Index NL, need (clustered!) B+ tree index.
• Range probes on inner; # matches likely to be much higher than for 

equality joins.

– Hash Join, Sort Merge Join not applicable!
– Block NL quite likely to be the best join method here.
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Set Operations
• Intersection and cross-product special cases of join.
• Union (Distinct) and Except similar; we’ll do union.
• Sorting based approach to union:

– Sort both relations (on combination of all attributes).
– Scan sorted relations and merge them.
– Alternative:  Merge runs from Pass 0 for both relations.

• Hash based approach to union:
– Partition R and S using hash function h.
– For each S-partition, build in-memory hash table (using 

h2), scan corr. R-partition and add tuples to table while 
discarding duplicates.

Aggregate Operations (AVG, MIN, etc.)
• Without grouping:

– In general, requires scanning the relation.
– Given index whose search key includes all attributes in the 

SELECT or WHERE clauses, can do index-only scan.  
• With grouping:

– Sort on group-by attributes, then scan relation and 
compute aggregate for each group.  (Can improve upon 
this by combining sorting and aggregate computation.)

– Similar approach based on hashing on group-by attributes.
– Given tree index whose search key includes all attributes in 

SELECT, WHERE and GROUP BY clauses, can do index-only 
scan;  if group-by attributes form prefix of search key, can 
retrieve data entries/tuples in group-by order.

Impact of Buffering
• If several operations are executing concurrently, 

estimating the number of available buffer pages is 
guesswork.

• Repeated access patterns interact with buffer 
replacement policy.
– e.g., Inner relation is scanned repeatedly in Simple 

Nested Loop Join.  With enough buffer pages to hold 
inner, replacement policy does not matter.  Otherwise, 
MRU is best, LRU is worst (sequential flooding).

– Does replacement policy matter for Block Nested Loops?
– What about Index Nested Loops? Sort-Merge Join?

Summary
• A virtue of relational DBMSs: queries are composed of a 

few basic operators; the implementation of these 
operators can be carefully tuned (and it is important to 
do this!).

• Many alternative implementation techniques for each 
operator; no universally superior technique for most 
operators.  

• Must consider available alternatives for each operation 
in a query and choose best one based on system 
statistics, etc.  This is part of the broader task of 
optimizing a query composed of several ops. 


