
Transaction Management Overview

15-415, Spring 2003, Lecture 21
R & G Chapter 16

There are three side effects of acid.
Enhanced long term memory,
decreased short term memory,
and I forget the third.

- Timothy Leary

Query Compiler

query

Execution Engine Logging/Recovery

LOCK TABLE

Concurrency Control

Storage Manager
BUFFER POOLBUFFERS

Buffer Manager

Schema Manager

Data Definition

DBMS: a set of cooperating software modules

Transaction Manager

transaction

Components of a DBMS

Concurrency Control & Recovery

• Very valuable properties of DBMSs
– without these, DBMSs would be much less useful

• Based on concept of transactions with ACID
properties

• Remainder of the lectures discuss these issues

Definitions

• Database
– a fixed set of named resources (entities)

• Consistency constraints
– must be true for DB to be considered consistent
– Example:

Σ(ACCT-BALS) = Σ(ASSETS)
ACCT-BAL >= 0

• Key point

consistent
database

S1

consistent
database

S2

transaction T

• Concurrent execution of independent transactions
– utilization/throughput (“hide” waiting for I/Os.)
– response time
– fairness

• Example:

Statement of Problem

t0:
t1:
t2:
t3:
t4:
t5:

T1:
tmp1 := read(X)

tmp1 := tmp1 – 20

write tmp1 into X

T2:

tmp2 := read(X)

tmp2 := tmp2 + 10

write tmp2 into X

Statement of problem (cont.)

• Arbitrary interleaving can lead to
– Temporary inconsistency (ok, unavoidable)
– “Permanent” inconsistency

• Need correctness criteria:
– schedule: a particular action sequencing for a set

of transactions
– consistent schedule: each transaction sees

consistent view of DB

Concurrent Execution & Transactions

• Concurrent execution essential for good
performance.
– Because disk accesses are frequent, and relatively slow,

it is important to keep the CPU humming by working on
several user programs concurrently.

• A program may carry out many operations on the
data retrieved from the database, but the DBMS is
only concerned about what data is read/written
from/to the database.

• transaction - DBMS’s abstract view of a user
program:
– a sequence of reads and writes.

Goal: The ACID properties

• A tomicity: All actions in the Xact happen, or none happen.

• C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

• I solation: Execution of one Xact is isolated from that of other
Xacts.

• D urability: If a Xact commits, its effects persist.

Atomicity of Transactions

• A transaction might commit after completing all its
actions, or it could abort (or be aborted by the DBMS)
after executing some actions.

• A very important property guaranteed by the DBMS
for all transactions is that they are atomic. That is, a
user can think of a Xact as always either executing all
its actions, or not executing any actions at all.
– One approach: DBMS logs all actions so that it can undo

the actions of aborted transactions.
– Another approach: Shadow Pages
– Logs won because of need for audit trail and for efficiency

reasons.

Transaction Consistency

• “Consistency” - data in DBMS is accurate in modeling real
world, follows integrity constraints

• User must ensure transaction consistent by itself
– I.e., if DBMS consistent before Xact, it will be after also

• System checks ICs and if they fail, the transaction rolls back
(i.e., is aborted).
– DBMS enforces some ICs, depending on the ICs declared in

CREATE TABLE statements.
– Beyond this, DBMS does not understand the semantics of the data.

(e.g., it does not understand how the interest on a bank account is
computed).

Isolation (Concurrency)
• Users submit transactions, and
• Each transaction executes as if it was running by

itself.
– Concurrency is achieved by DBMS, which interleaves

actions (reads/writes of DB objects) of various
transactions.

• We will formalize this notion shortly.
• Many techniques have been developed. Fall into two

basic categories:
– Pessimistic – don’t let problems arise in the first place
– Optimistic – assume conflicts are rare, deal with them

after they happen.

Example
• Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• 1st xact transfers $100 from B’s account to A’s
• 2nd credits both accounts with 6% interest.
• Assume at first A and B each have $1000. What

are the legal outcomes of running T1 and T2???
• $2000 *1.06 = $2120

• There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.
But, the net effect must be equivalent to these two
transactions running serially in some order.

Example (Contd.)
• Legal outcomes: A=1166,B=954 or A=1160,B=960
• Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

! This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• Result: A=1166, B=960; A+B = 2126, bank loses $6
• The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the
actions of different transactions.

• Equivalent schedules: For any database state, the
effect (on the set of objects in the database) of
executing the first schedule is identical to the effect of
executing the second schedule.

• Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.
(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts, “dirty
reads”):

• Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Anomalies (Continued)

• Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Lock-Based Concurrency Control

• Here’s a simple way to allow concurrency but avoid the anomalies
just descibed…

• Strict Two-phase Locking (Strict 2PL) Protocol:
– Each Xact must obtain a S (shared) lock on object before reading, and

an X (exclusive) lock on object before writing.
– System can obtain these locks automatically
– Two phases: acquiring locks, and releasing them

• no lock is ever acquired after one has been released

– All locks held by a transaction are released when the transaction
completes

– If an Xact holds an X lock on an object, no other Xact can get a lock (S
or X) on that object.

• Strict 2PL allows only serializable schedules.

Aborting a Transaction (i.e., Rollback)

• If a xact Ti aborted, all actions must be undone.
– Also, if Tj reads object last written by Ti, Tj must be

aborted!
• Most systems avoid such cascading aborts by

releasing locks only at EOT (i.e., strict locking).
– If Ti writes an object, Tj can read this only after Ti

finishes.
• In order to undo actions of an aborted transaction,

DBMS maintains log which records every write. Log
also used to recover from system crashes: all active
Xacts at time of crash are aborted when system
comes back up.

The Log
• Log consists of “records” that are written sequentially.

– Typically chained together by Xact id
– Log is often duplexed and archived on stable storage.

• Need for UNDO and/or REDO depend on Buffer Mgr.
– UNDO required if uncommitted data can overwrite stable version of

committed data (STEAL buffer management).
– REDO required if xact can commit before all its updates are on disk (NO

FORCE buffer management).
• The following actions are recorded in the log:

– if Ti writes an object, write a log record with:
– If UNDO required need “before image”
– IF REDO required need “after image”.
– Ti commits/aborts: a log record indicating this action.

Logging Continued

• Write Ahead Logging protocol
– Log record must go to disk before the changed page!

• implemented via a handshake between log manager
and the buffer manager.

– All log records for a transaction (including it’s commit
record) must be written to disk before the transaction is
considered “Committed”.

• All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with
deadlocks etc.) are handled transparently by the
DBMS.

Durability - Recovering From a Crash
• There are 3 phases in Aries recovery (and most others):

– Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were active, and all
dirty pages in the buffer pool at the time of the crash.

– Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

– Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update, as
found in the log), working backwards in the log.

• At the end --- all committed updates and only those
updates are reflected in the database.

• Some care must be taken to handle the case of a crash
occurring during the recovery process!

Summary

• Concurrency control and recovery are among the most
important functions provided by a DBMS.

• Concurrency control is automatic.
– System automatically inserts lock/unlock requests and

schedules actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

• Write-ahead logging (WAL) and the recovery protocol
are used to undo the actions of aborted transactions
and to restore the system to a consistent state after a
crash.

