

- Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
- "Legacy systems" in older models - e.g., IBM's IMS
- Object-oriented concepts have recently merged in
 - object-relational model
 - Informix, IBM DB2, Oracle 8i
 - Early work done in POSTGRES research
 - project at Berkeley

Relational Database: Definitions Relational database: a set of relations. Relation: made up of 2 parts: Schema : specifies name of relation, plus name and type of each column. E.g. Students(sid: string, name: string, login: string, age: integer, gpa: real) Instance : a table, with rows and columns. #rows = cardinality

- #fields = *degree / arity*
- Can think of a relation as a set of rows or tuples.
 - i.e., all rows are distinct

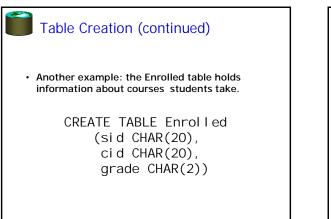
Ex: Instance of Students Relation

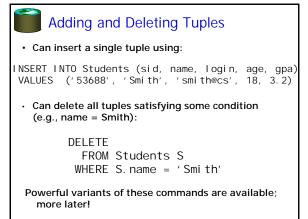
sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@cs	18	3.2
53650	Smith	smith@math	19	3.8

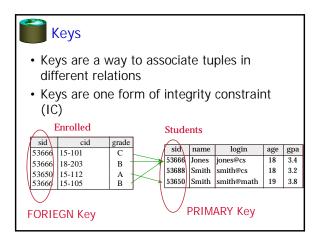
- Cardinality = 3, arity = 5, all rows distinct
- Do all values in each column of a relation instance have to be distinct?

SQL - A language for Relational DBs SQL* (a.k.a. "Sequel"), standard language

- Data Definition Language (DDL)
- create, modify, delete relations
- specify constraints
- administer users, security, etc.
- Data Manipulation Language (DML)
 - Specify *queries* to find tuples that satisfy criteria
 - add, modify, remove tuples

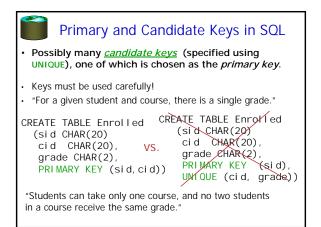

* Structured Query Language

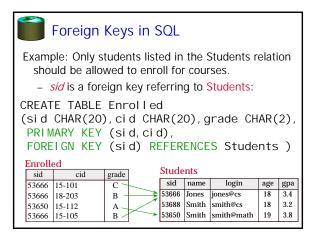

 SQL Overview CREATE TABLE <name> (<field> <domain>,)</domain></field></name>
• INSERT INTO <name> (<field names="">) VALUES (<field values="">)</field></field></name>
• DELETE FROM <name> WHERE <condition></condition></name>
• UPDATE <name> SET <field name=""> = <value> WHERE <condition></condition></value></field></name>
• SELECT <fields> FROM <name> WHERE <condition></condition></name></fields>

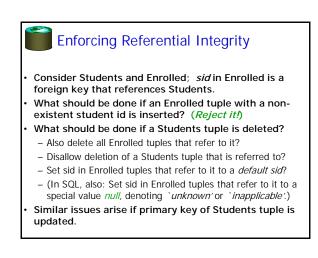


 Creates the Students relation.
 Note: the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.

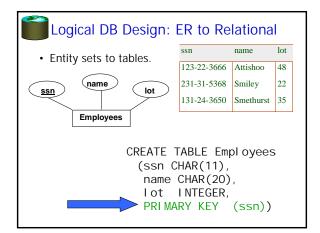
> CREATE TABLE Students (sid CHAR(20), name CHAR(20), login CHAR(10), age INTEGER, gpa FLOAT)



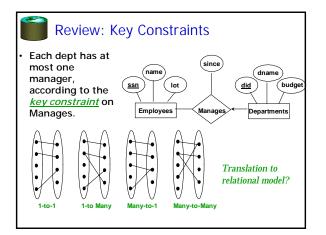

- A set of fields is a *superkey* if:
- No two distinct tuples can have same values in all key fields
- A set of fields is a <u>key</u> for a relation if :
 - It is a superkey
 - No subset of the fields is a superkey
- what if >1 key for a relation?
 - one of the keys is chosen (by DBA) to be the *primary* key.
 Other keys are called *candidate* keys.

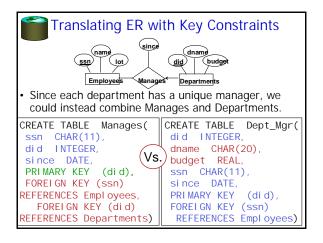

• E.g.

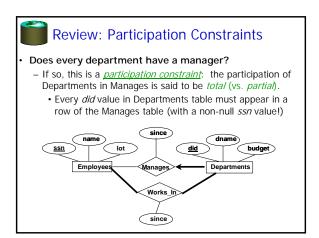
- sid is a key for Students.
- What about name?
- The set { *sid, gpa*} is a superkey.


Integrity Constraints (ICs)

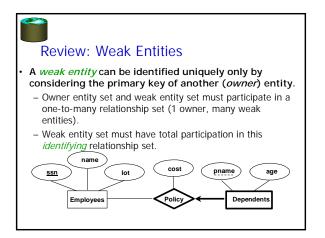
- IC: condition that must be true for any instance of the database; e.g., domain <u>constraints.</u>
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A legal instance of a relation is one that satisfies all specified ICs.
 - DBMS should not allow illegal instances.
- · If the DBMS checks ICs, stored data is more faithful to real-world meaning.
 - Avoids data entry errors, too!

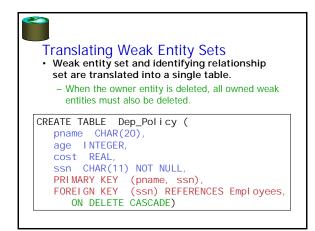


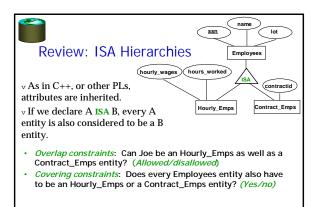

Where do ICs Come From?

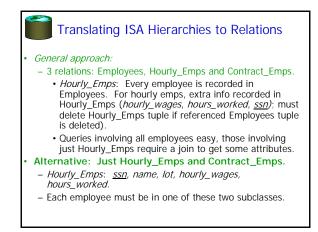

- · ICs are based upon the semantics of the real-world that is being described in the database relations.
- We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at an instance.
 - An IC is a statement about all possible instances!
 - From example, we know *name* is not a key, but the assertion that *sid* is a key is given to us.
- Key and foreign key ICs are the most common; more general ICs supported too.




Relationship Sets to Tables							
 In translating a many-to- many relationship set to a relation, attributes of the relation must include: 1) Keys for each 	ssn CHAR(1),						
a <i>superkey</i> for the	ssn	did	since				
relation.	123-22-3666	51	1/1/91				
2) All descriptive	123-22-3666	56	3/3/93				
attributes.	231-31-5368	51	2/2/92				







Relational Model: Summary

- A tabular representation of data.
- Simple and intuitive, currently the most widely used
 Object-relational variant gaining ground
- Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
 - Two important ICs: primary and foreign keys
 - In addition, we always have domain constraints.
- Mapping from ER to Relational is (fairly) straightforward.
- NEXT: FILES< STORAGE, BUFFERS, DISKS...
- READ CHAPTER 9!