Storing Data: Disks and Files

15-415 Spring 2003, Lecture 4
(R&G Chapter 9)

-

“Yea, from the table of my memory
I'll wipe away all trivial fond records.”
-- Shakespeare, Hamlet

=
Homework 1

e out today
e Due Wednesday, February 5
e Send questions to newsgroup!

e Not much coding needed — but it will take you
a while to familiarize yourself with the code
and do the analysis required, so...

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

‘ Disk Space Management

=
Disks and Files

e DBMS stores information _
on disks. -

— In an electronic world, disks are a mechanical
anachronism!
e This has major implications for DBMS design!
— READ: transfer data from disk to
main memory (RAM).
— WRITE: transfer data from RAM to disk.
— Both are high-cost operations,
relative to in-memory operations,
so must be planned carefully!

==
Why Not Store It All in Main Memory?

e Costs too much. $100 will buy you either
0.5 GB of RAM or 100 GB of disk (EIDI/ATA) or
20GB (SCSI) today.
— High-end Databases today in the 10-100 TB range.
— Approx 60% of the cost of a production system is in

the disks.

* Main memory is volatile. We want data to be

saved between runs. (Obviously!)

* Note, some specialized systems do store entire
database in main memory.
— Vendors claim 10x speed up vs. traditional DBMS
running in main memory.

==
The Storage Hierarchy

| Begistern
—Main memory (RAM) for

Smaller, Faster

currently used data. Tt
—Disk for the main database 4 I
(secondary storage). I Mia My
—Tapes for archiving older ‘._)
versions of the data (tertiary | Fessesis |
storage). 4 I
[Mgt Digh]
QUESTION: Why does it P
it have to be a o] l
hierarchy? 1 i
Magrenc Toper Bigger, Slower

Source: Operating Systems Concepts 5th Edition

ﬁ Processor/memory subsystem

INSTRUCTION
POOL

f
FETCH/ DISPATCH RETIRE
DECODE EXECUTE UNIT
UNIT UNIT
3 3 .
| L2 CACHE |
A Vv
MAIN MEMORY

— Out-of-order execution, non-blocking caches
— L1 is usually on-chip, L2 off-chip (recently: L3)

| Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Andromeda
109 Tape /Optical 2,000 Years
Robot
10 6 Disk 2 Years
100 Memory 1.5 hr

10 On Board Cache 10 min

2 On Chip Cache i
1 Registers %My Head 1 min

ﬁ Disks

e Secondary storage device of choice.

e Main advantage over tapes: random access\vs.

sequential.

— Also, they work. (Tapes deteriorate over time)

e Data is stored and retrieved in units called disk

blocks or pages.

e Unlike RAM, time to retrieve a disk page varies

depending upon location on disk.

— Therefore, relative placement of pages on disk has

major impact on DBMS performance!

ﬁ Anatomy of a Disk

Disk head

The platters spin (say, 150 rps).

The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a cylinder
(imaginary!).

Only one head

reads/writes at any

one time. K
< Block size is a multiple®™ assembly
of sector size (which is fixed).

<Newer disks have several “zones”,
with more data on outer tracks.

——

Arm movement

Spindle

Tracks

Sector

Platters

=
- Accessing a Disk Page

e Time to access (read/write) a disk block:
— Seek time (moving arms to position disk head on track)
— rotational delay (waiting for block to rotate under head)
— transfer time (actually moving data to/from disk surface)
e Seek time and rotational delay dominate.
— Seek time varies from about 1 to 20msec
— Rotational delay varies from 0 to 10msec
— Transfer rate is < 1msec per 4KB page

* Key to lower 1/0 cost:
reduce seek/rotation delays!
Hardware vs. software solutions?

« Also note: For shared disks most time spent
waiting in queue for access to arm/controller Seek

Seek

=
- Arranging Pages on Disk

e “Next’ block concept:
— blocks on same track, followed by
— blocks on same cylinder, followed by
— blocks on adjacent cylinder

e Blocks in a file should be arranged sequentially
on disk (by “next’), to minimize seek and
rotational delay.

e For a sequential scan, pre-fetching several
pages at a time is a big win!

e Also, modern controllers do their own caching.

ﬁ Disk Space Management

e Lowest layer of DBMS software manages space
on disk (using OS file system or not?).

e Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page

e Best if a request for a sequence of pages is
satisfied by pages stored sequentially on disk!
Higher levels don’t need to know if/how this is
done, or how free space is managed.

ﬁ Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL ¢

~—

disk page

—

free frame

MAIN MEMORY

N

DISK choice of frame dictated
DB by replacement policy

e Data must be in RAM for DBMS to operate on it!

= Buffer Mgr hides the fact that not all data is in RAM (Just
like hardware cache policies hide the fact that not all data
/s In the caches)

ﬁ When a Page is Requested ...

e Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

e If requested page is not in pool:

— Choose a frame for replacement
(only un-pinned pages are candidates)

— If frame is “dirty”, write it to disk
— Read requested page into chosen frame
* Pinthe page and return its address.

>4 If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

More on Buffer Management

* Requestor of page must unpin it, and indicate
whether page has been modified:

— dirty bit is used for this.
e Page in pool may be requested many times,
— a pin countis used. A page is a candidate for
replacement iff pin count = 0 (“unpinned”)
e CC & recovery may entail additional 1/0 when

a frame is chosen for replacement. (Write-
Ahead Log protocol; more later.)

Buffer Replacement Policy

e Frame is chosen for replacement by a
replacement policy:
— Least-recently-used (LRU), MRU, Clock, etc.

e Policy can have big impact on # of 1/0’s;
depends on the access pattern.

LRU Replacement Policy

e [east Recently Used (LRU

— for each page in buffer pool, keep track of time last
unpinned

— replace the frame which has the oldest (earliest) time
— very common policy: intuitive and simple

e Problems?

» Problem. Sequential flooding
— LRU + repeated sequential scans.

— # buffer frames < # pages in file means each page
request causes an 1/0. MRU much better in this
situation (but not in all situations, of course).

“Clock” Replacement Policy

e An approximation of LRU.

* Arrange frames into a cycle, store
one “reference bit” per frame

« When pin count goes to O, reference bit set on.

e When replacement necessary:

D(1)

C()

do {
if (pincount == 0 && ref bit is off)
Questions: choose current page for replacement;
How like LRU?| else if (pincount == 0 && ref bit is on)
Problems? turn off ref bit;

advance current frame;
} until a page is chosen for replacement;

DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let
OS manage these tasks?

e Some limitations, e.g., files can’t span disks.

— Note, this is changing --- OS File systems are getting
smarter (i.e., more like databases!)

e Buffer management in DBMS requires ability to:
— pin a page in buffer pool, force a page to disk &
order writes (important for implementing CC &

recovery)

— adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

10

3
Summary

e Disks provide cheap, non-volatile storage.

— Random access, but cost depends on location of page on
disk; important to arrange data sequentially to minimize
seek and rotation delays.

e Buffer manager brings pages into RAM.
— Page stays in RAM until released by requestor.

— Written to disk when frame chosen for replacement
(which is sometime after requestor releases the page).

— Choice of frame to replace based on replacement policy.
— Tries to pre-fetch several pages at a time.

Summary (Contd.)

e DBMS vs. OS File Support

— DBMS needs features not found in many OS's, e.g.,
forcing a page to disk, controlling the order of
page writes to disk, files spanning disks, ability to
control pre-fetching and page replacement policy
based on predictable access patterns, etc.

11

