Tree-Structured Indexes

15-415, Spring 2003, Lecture 6
R & G Chapter 10

Ll

“If I had eight hours to chop down a
tree, I'd spend six sharpening my ax.”

Abraham Lincoln

i
Introduction

Recall: 3 alternatives for data entries k*:

e Data record with key value k

e <k, rid of data record with search key value k>

e <Kk, list of rids of data records with search key k>

e Choice is orthogonal to the /ndexing technique
used to locate data entries k*.

e Tree-structured indexing techniques support
both range searches and equality searches.

e /SAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

- ISAM =/Indexed Sequential Access Method

=

Range Searches

e " Find all students with gpa > 3.0’

— If data is in sorted file, do binary search to find first
such student, then scan to find others.

— Cost of binary search in a database can be quite
high. Q: Why???

e Simple idea: Create an “index’ file.

J(k1 k2 | | | | KN | Index File
/ \
| Page 1 | | Page 2 | Page 3 Data File

* Can do binary search on (smaller) index file!

e

ISAM index entrx

Po | Ko |Py| KalP, o o K _|Pm

T |
l7 :

« Index file may still be quite large. But we can
apply the idea repeatedly!

Non-leaf

Pages

T 7Y AR AR AR

o [|j°°| | L]---] |) L J---L_1 L J---L 1

ages w 1 7
] overflow ------>[__] NS

age N
pag Primary pages

* |eaf pages contain data entries.

ﬁ Example ISAM Tree

e /ndex entries.<search key value, page id>
they direct search for data entries /n /eaves.
e Example where each node can hold 2 entries;

Root ~~a.

40
20 33 51| |63

/1 L\

10* | 15* 20% | 27* 33* | 37* 40% | 46* 51* | 55* 63 | 97*

Data Pages

ﬁ ISAM is a STATIC Structure

e File creation. Leaf (data) pages allocated | Index Pages

sequentially, sorted by search key; then
index pages allocated, then overflow pgs. | oyeriow pages

e Search. Start at root; use key
comparisons to go to leaf. Cost =1log (N ;
F = # entries/pg (i.e., fanout), N = # leaf pgs
— no need for “next-leaf-page’ pointers. (Why?)

e /nsert. Find leaf that data entry belongs to,
and put it there. Overflow page if necessary.

e Delete: Find and remove from leaf; if empty
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf pages.

==

Example: Insert 23*, 48*, 41*, 42*

Index
Pages

(oot |

0],

;
Primary p/ v \Q P/ i \
teal | o 15| [20t|[27] |[33* | o7*] \ﬂ‘ a6+ || [s1-]|[55" | [es*
Pages)

Overflow
Pages

|Iiiiiil\
Index
Pages

... then Deleting 42*, 51*, 97*

(oot |

0],

I

51

Primary p/ v \Q P/ v \
Leaf 107 || 15+ | ” 20+ |[27+] |[33* | 37] \ﬂ‘ a6* | (55] [ea D
Pages y

Overflow
Pages

* Note that 51* appears in index levels, but not in leaf!

=]

ﬁ ISAM ---- Issues?

* Pros
— 77?77

e Cons
— 77?77

ﬁB+ Tree: The Most Widely-Used Index

» Insert/delete at log N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

e Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. “d” is called the

order of the tree.

e Supports equality and range-searches efficiently.

e As in ISAM, all searches go from root to leaves, but
structure is dynamic.

Index Entries
(Direct search)

/ l Data Entries
| ("Sequence set")

i
- Example B+ Tree

e Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

e Search for 5*, 15*, all data entries >= 24* ...

Root \

13 17 24 30

AN\ A VN VN
|2*|3*|5*|7*| |14*|16*| | | |19*|20* 22*| |24*|27*|29*| |33*|34*|38*|39*|

* Based on the search for 15%, we know it is not in the tree!

g
- B+ Trees in Practice (cool facts!)

e Typical order: 100. Typical fill-factor: 67%b.
— average fanout = 133

e Typical capacities:
— Height 4: 1334 = 312,900,700 entries
— Height 3: 1333 = 2,352,637 entries

e Can often hold top levels in buffer pool:
— Level 1 = 1 page= 8KB
— Level 2 = 133 pages= 1 MB
— Level 3 = 17,689 pages = 133 MB

ﬁ Inserting a Data Entry into a B+ Tree

Find correct leaf L.
Put data entry onto L.

— If L has enough space, done!

— Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

This can happen recursively

— To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.

— Tree growth: gets wider or one level taller at top.

ﬁ Example B+ Tree - Inserting 8*

/ T

ll el 1

A A A

Zl[]]e] Jefe] |

| 191 20*1 22*| | |24*| 27*|29*| | |33*| 34*| 38*| 39*|

v Notice that root was split, leading to increase in height.

v In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

ﬁ Example: Data vs. Index Page Split

Data 2*|3*|5*|7*|8*

Entry to be inserted in parent node.
e Observe how Page ! — (Note that 5 is copied up and
minimum Sp”t continues to appear in the leaf.)
occupancy is S
guaranteed in |2* - | | |5* |7* | o | | I
both leaf and
index pg splits.
« Note difference Index 5 131117 || 22 || 30
between copy- Page , .

f | L Entry to be inserted in parent node.
up and push-up; Split 1711——S_ (Note that 17 is pushed up and only
be sure vou appears once in the index. Contrast

y this with a leaf split.)
understand the
reasonstorinis: Tl T [=[=[11
v A

ﬁ Deleting a Data Entry from a B+ Tree

e Start at root, find leaf L where entry belongs.
e Remove the entry.

— If L is at least half-full, done’

— If L has only d-1 entries,

 Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

« If re-distribution fails, merge L and sibling.

e If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

e Merge could propagate to root, decreasing height.

g4 Example Tree (including 8%)
Delete 19* and 20* ...

Root

el L0
\

I B
— 4/|H\X

2% | 3* k“*S* 7* | 8* “* * 224 2 27*| 29% *| 34*%| 38*| 39*
I O I S S I RS IESERES S

e Deleting 19* is easy.
e Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

T
- ... And Then Deleting 24*
\

e Must merge.

30

e Observe " toss of
index entry (on right), ,— .
and " pull dowr’ of |22* | 27*|29* | | |33* |34* |3s* |39* |
index entry (below).

5 13 17 30

=
Example of Non-leaf Re-distribution

e Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

e In contrast to previous example, can re-distribute
entry from left child of root to right child.

Root

EREE
] ﬁ IO

AN
L L ELTe] Jfeet [ffeet 1Rtz 1l Jer

=

After Re-distribution

e Intuitively, entries are re-distributed by ~pushing
through' the splitting entry in the parent node.

e It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

ROCN

17

5 13 20| 22 || 30
(Aol [le] oo [Jfesf T Jloofee] [Jfeeforfee] Jfse]oefeed]

10

ﬁ Prefix Key Compression

e Important to increase fan-out. (Why?)
e Key values in index entries only “direct traffic’;
can often compress them.

— E.g., If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)

« Is this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

< In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

e Insert/delete must be suitably modified.

ﬁ Bulk Loading of a B+ Tree

e If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

— Also leads to minimal leaf utilization --- why?
e Bulk Loading can be done much more efficiently.

e [Initialization. Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Roo™

/

x|

| | | | Sorted pages of data entries; not yet in B+ tree

44*

35+ 36*| |38*|4l*|

3* o 1o*|11*| |12*|13*| |20~|22* 23*|31'|

a

11

==
- Bulk Loading (Contd.)
Y
Root I l
e Index entries for leaf
pages always entered

£ ® Data entry pages
into right-most index H 6 |.| || |,|12 | || = ELK not yet in B+ tree

page just above leaf Z [

level. When this fills
up it SplitS. (Spllt 3% 4*| | 6% | 9* lO%llq 124134 |20%422 23;|31f| 35;|36; 38:141:1 44:1

may go up right-most
path to the root.)

e Much faster than
repeated inserts,
especially when one
considers locking!

Data entry pages
not yet in B+ tree

B I IE I '/||38||\q||
3[4 [6+] o* 1o;|11$| 12113*‘{ 2og|225| zaﬂalf] 357367 [38f417|[44]

=
- Summary of Bulk Loading

e Option 1: multiple inserts.

— Slow.

— Does not give sequential storage of leaves.
e Option 2: Bulk Loading

— Has advantages for concurrency control.

— Fewer 1/0s during build.

— Leaves will be stored sequentially (and linked, of
course).

— Can control “fill factor” on pages.

12

ﬁ A Note on "Order’

e Order (d) concept replaced by physical space
criterion in practice (" at least half-full).

— Index pages can typically hold many more entries
than leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with the
same search key value (auplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

e Many real systems are even sloppier than this ---
only reclaim space when a page is completely
empty.

ﬁ Summary

» Tree-structured indexes are ideal for range-
searches, also good for equality searches.

e ISAM is a static structure.
— Only leaf pages modified; overflow pages needed.

— Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

e B+ tree is a dynamic structure.

— Inserts/deletes leave tree height-balanced; log N
cost.

— High fanout (F) means depth rarely more than 3 or 4.
— Almost always better than maintaining a sorted file.

13

ﬁ Summary (Contd.)

— Typically, 67% occupancy on average.

— Usually preferable to ISAM, modulo /ocking
considerations; adjusts to growth gracefully.

— If data entries are data records, splits can change rids!
e Key compression increases fanout, reduces height.

e Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.

e Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

14

