External Sorting

15-415, Spring 2003, Lecture 7

R & G Chapter 13 ‘ '
Y

“There it was, hidden in alphabetical
order.”

Rita Holt

=
- Why Sort?

* A classic problem in computer science!
« Data requested in sorted order
- e.g., find students in increasing gpa order
* Sorting is first step in bulk loading B+ tree index.

« Sorting useful for eliminating duplicate copiesin a
collection of records (Why?)

e Sorting is useful for summarizing related groups of
tuples

e Sort-merge join algorithm involves sorting.

* Problem: sort 1Gb of data with 1Mb of RAM.
- why not virtual memory?

=
- Streaming Data Through RAM

« An important detail for sorting & other DB operations
* Simple case:
— Compute f(x) for each record, write out the result
— Read a page from INPUT to Input Buffer
— Write f(x) for each item to Output Buffer
— When Input Buffer is consumed, read another page
— When Output Buffer fills, write it to OUTPUT
* Reads and Writes are ot coordinated
— E.g., if f() is Compress(), you read many pages per write.
— E.g., if f() is DeCompress(), you write many pages per read.

Input Output
Buffer f(X) Buffer
AN

RAM

=
- 2-Way Sort: Requires 3 Buffers

* Pass 0: Read a page, sort it, write it.

- only one buffer page is used (as in previous slide)
e Pass 1, 2, 3, ..., etc.:

— requires 3 buffer pages

— merge pairs of runs into runs twice as long

— three buffer pages used.

S
INPUT 1
OUTPUT
=[[INPUT 2

Main memory buffers Disk

Disk

=
- Two-Way External Merge Sort

. (o4l o] 56 5 [2] I inputite
P Eachpassweread+write | | | | | | | [| passo
each page in file. Bl ipageruns

N pages in the file => the PASS1
number of passes 2-page runs
2’—|Og2 N1 +1 -y PASS2

'
P So total cost is: 4-page runs
Le]
2N([log, N+1) s
b /dea: Divide and conquer: sort|
8-page runs|

subfiles and merge

=
- General External Merge Sort

< More than 3 buffer pages. How can we utilize them?
« To sort a file with NV pages using B buffer pages:

- Pass 0: use B buffer pages. Produce [N/B] sorted runs
of B pages each.

- Pass 1, 2, ..., etc.: merge B-1runs.

—
||

| I INPUT 2

| E—

Disk B Main memory buffers

Disk

=
Cost of External Merge Sort

- Number of passes: 1+[log, ,[N/ BJ]
e Cost = 2N * (# of passes)
* E.g., with 5 buffer pages, to sort 108 page file:
~ Pass 0: [108/5] = 22 sorted runs of 5 pages
each (last run is only 3 pages)
~ Pass 1: [22/4] =6 sorted runs of 20 pages
each (last run is only 8 pages)

- Pass 2: 2 sorted runs, 80 pages and 28 pages
- Pass 3: Sorted file of 108 pages

=
Number of Passes of External Sort

(1/0 cost is 2N times number of passes)

N B=3 |B=5 |B=9 |B=17|B=129|B=257
100 7 4 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 |7 5 4 2 2
100,000 17 |9 6 5 3 3
1,000,000 20 |10 7 5 3 3
10,000,000 23 |12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000| 30 | 15 10 8 5 4

-

Internal Sort Algoritﬁé

* Quicksort is a fast way to sort in memory.
« Alternative: “tournament sort” (a.k.a. “heapsort”,
“replacement selection”)
« Keep heap H in memory
read B-2 pages of records, inserting into H;
while (records left) {
m = H.removeMinUnmarked (); append m to output buffer;
if (m=NULL => all entries in H are marked) {
H.unmark(all);
start new output run;
¥ else {
read in new record r (use 1 buffer for input pages);
H.insert(r at m’s position);
if (r < m H.mark(nr);
3
3

==
More on Heapsort

« Fact: average length of a run in heapsort is 2(B-2)
- The “snowplow” analogy

* Worst-Case:
- What is min length of a run?
- How does this arise?

* Best-Case:
- What is max length of a run?
- How does this arise?

* Quicksort is faster, but ... longer runs often means
fewer passes!

g

1/0 for External Merge Sort

e Actually, do 1/0 a page at a time
— Not an 1/0 per record

e In fact, read a block (chunk) of pages
sequentially!

e Suggests we should make each buffer
(input/output) be a block of pages.
- But this will reduce fan-out during merge passes!
- In practice, most files still sorted in 2-3 passes.

g
Example: Double Buffering

* To reduce wait time for 1/0 request to
complete, can prefetch into ~shadow block’.

- Potentially, more passes; in practice, most files
Stil/ sorted in 2-3 passes.

L leur]

— NPUT2

—_— -OUTPUT_ m— |
e [meurz] = |

——— oo / - —
Disk N\ [meura] block size ok

B main memory buffers, k-way merge

=
- Number of Passes of Optimized Sort

N B=1,000 |B=5,000 |B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

>4 Block size = 32, initial pass produces runs of size 2B.

==
- Sorting Records!

« Sorting has become a blood sport!
- Parallel sorting is the name of the game ...
* Minute Sort: how many 100-byte records can you sort in
a minute?
— Typical DBMS: 10MB (~100,000 records)
— Current World record: 21.8 GB
« 64 dual-processor Pentium-I11 PCs (1999)
* Penny Sort: how many can you sort for a penny?
— Current world record: 12GB
= 1380 seconds on a $672 Linux/Intel system (2001)
* $672 spread over 3 years = 1404 seconds/penny
« See
http://research.microsoft.com/barc/SortBenchmark/

==
- Using B+ Trees for Sorting

e Scenario: Table to be sorted has B+ tree index on
sorting column(s).

« ldea: Can retrieve records in order by traversing leaf
pages.

e /s this a good idea?

» Cases to consider:
- B+ tree is clustered Good idea!
- B+ tree is not clustered Could be a very bad idea!

==
- Clustered B+ Tree Used for Sorting

Index
(Directs search)

pa s
VM NN
i

Data Records

« Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

« If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched just
once.

P< Always better than external sorting!

&=
. Unclustered B+ Tree Used for Sorting

« Alternative (2) for data entries; each data
entry contains rid of a data record. In general,
one 1/0 per data record!

Index
(Directs search)

Data Entries
("Sequence set™)

Data Records

=
- External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 (600,000 (100,000 {1,000,000 |10,000,000
1,000,000 (8,000,000 (1,000,000 (10,000,000 |100,000,000
10,000,000 (80,000,000 10,000,000 {100,000,000 |1,000,000,000

D4 p: # of records per page
< B=1,000 and block size=32 for sorting
P< p=100 is the more realistic value.

==
- Summary

* External sorting is important; DBMS may dedicate
part of buffer pool for sorting!

* External merge sort minimizes disk 1/0 cost:

- Pass 0: Produces sorted runs of size B (# buffer pages).

Later passes: merge runs.

- # of runs merged at a time depends on B, and block
size.

- Larger block size means less 1/0 cost per page.
- Larger block size means smaller # runs merged.
- In practice, # of runs rarely more than 2 or 3.

==
- Summary, cont.

* Choice of internal sort algorithm may matter:
- Quicksort: Quick!
- Heap/tournament sort: slower (2x), longer runs
e The best sorts are wildly fast:
- Despite 40+ years of research, we're still
improving!
e Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

