Unary Query
Processing Operators

15-415, Spring 2003, Lecture 8
Not in the Textbook!

-

-

A “Slice” Through Query Processing

» We'll study single-
table queries today SQL Query

— SQL details

— Query Executor
Architecture

— Simple Query _
“Optimization” Files

ry Optimization
nd Execution

tional Operators

d Access Methods

Buffer Management

Disk Space Management

ﬁ Basic Single-Table Queries

e SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

ﬁ Basic Single-Table Queries

e SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

e Simplest version is straightforward
— Produce all tuples in the table that satisfy the predicate
— Output the expressions in the SELECT list

e Expression can be a column reference, or an arithmetic
expression over column refs

ﬁ Basic Single-Table Queries

e SELECT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

e Simplest version is straightforward
— Produce all tuples in the table that satisfy the predicate
— Output the expressions in the SELECT list

e Expression can be a column reference, or an arithmetic
expression over column refs

ﬁ SELECT DISTINCT

e« SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

 DISTINCT flag specifies removal of duplicates
before output

ﬁ ORDER BY

e SELECT DISTINCT S.name, S.gpa, S.age*2 AS a2
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa, S.name, a2,

e ORDER BY clause specifies that output should
be sorted

— Lexicographic ordering again!
e Obviously must refer to columns in the output
— Note the AS clause for naming output columns!

ﬁ ORDER BY

e SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa DESC, S.name ASC,;

* Ascending order by default, but can be
overriden

— DESC flag for descending, ASC for ascending
— Can mix and match, lexicographically

Aggregates

SELECT [DISTINCT] AVERAGE(S.gpa)
FROM Students S

WHERE S.dept = ‘CS’

[GROUP BY <column list>

[HAVING <predicate>]]

[ORDER BY <column list>]

Before producing output, compute a summary (a.k.a. an
aggregate) of some arithmetic expression

Produces 1 row of output

— with one column in this case
Other aggregates: SUM, COUNT, MAX, MIN
Note: can use DISTINCT /nside the agg function

— SELECT COUNT(DISTINCT S.name) FROM Students S

— vs. SELECT DISTINCT COUNT (S.name) FROM Students S;

GROUP BY

SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S

[WHERE <predicate>]

GROUP BY S.dept

[HAVING <predicate>]

[ORDER BY <column list>]

Partition the table into groups that have the same value on GROUP BY

columns

— Can group by a list of columns
Produce an aggregate result per group

— Cardinality of output = # of distinct group values
Note: can put grouping columns in SELECT list

— For aggregate queries, SELECT list can contain aggs and GROUP BY
columns only!

— What would it mean if we said SELECT S.name, AVERAGE(S.gpa) above??

HAVING

« SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S
[WHERE <predicate>]
GROUP BY S.dept
HAVING COUNT(*) > 5
[ORDER BY <column list>]

e The HAVING predicate is applied after grouping and
aggregation
— Hence can contain anything that could go in the SELECT list
— l.e. aggs or GROUP BY columns
< HAVING can only be used in aggregate queries
e It’s an optional clause

g
- Putting it all together

e SELECT S.dept, AVERAGE(S.gpa), COUNT(*)
FROM Students S
WHERE S.gender =“F”
GROUP BY S.dept
HAVING COUNT(*) > 5
ORDER BY S.dept;

==
- Context

» WelookedatSQL

« Now shift gears and § SQLQuery
look at Query
Processing

ry Optimization
nd Execution

tional Operators

d Access Methods

Buffer Management

Disk Space Management

g
- Query Processing Overview

e The query optimizer translates SQL to a special internal
“language”
— Query Plans
e The gquery executoris an interpreter for query plans

e Think of query plans as “box-and-arrow”
dataflow diagrams

— Each box implements a relational operator
— Edges represent a flow of tuples (columns as specified)

— For single-table queries, these diagrams are
straight-line graphs

name, gpa

name, gpa

SELECT DISTINCT name, gpa Optimizer
FROM Students

name, gpa

ﬁ Iterators

 The relational operators are all subclasses of the class
iterator:

class iterator {
void init();
tuple next();
void close();
iterator &inputs[];

/I additional state goes here

}

= Note:
— Edges in the graph are specified by inputs (max 2, usually)
— Encapsulation: any iterator can be input to any other!

— When subclassing, different iterators will keep different
kinds of state information

clas§ Sort extends iterator {
Example: Sort liple nes(

void close();

iterator &inputs[1];

int numberOfRuns;

DiskBlock runsf];

RID nextRIDI[];

}

e init():
generate the sorted runs on disk
Allocate runs]] array and fill in with disk pointers.
Initialize numberOfRuns
Allocate nextRID array and initialize to NULLs
e next():
nextRID array tells us where we’re “up to” in each run
find the next tuple to return based on nextRID array
advance the corresponding nextRID entry
return tuple (or EOF -- “End of Fun” -- if no tuples remain)
e close():

— deallocate the runs and nextRID arrays

ﬁ Postgres Version

e src/backend/executor/nodeSort.c
— ExeclnitSort (init)
— ExecSort (next)
— ExecEndSort (close)

e The encapsulation stuff is hardwired into the
Postgres C code

— Postgres predates even C++!

— See src/backend/execProcNode.c for the code that
“dispatches the methods” explicitly!

ﬁ Sort GROUP BY: Naive Solution

e The Sort iterator (could be external sorting, as
explained last week) naturally permutes its input so @
that all tuples are output in sequence

e The Aggregate iterator keeps running info (“transition
values™) on agg functions in the SELECT list, per group

— E.g., for COUNT, it keeps count-so-far

— For SUM, it keeps sum-so-far

— For AVERAGE it keeps sum-so-far and count-so-far

 As soon as the Aggregate iterator sees a tuple from a

new group:

1. It produces an output for the old group based on the agg
function
E.g. for AVERAGE it returns (sum-so-far/count-so-far)

2. It resets its running info.

3. It updates the running info with the new tuple’s info

ﬁ An Alternative to Sorting: Hashing!

e ldea:
— Many of the things we use sort for don’t exploit the order of
the sorted data
— E.g.: forming groups in GROUP BY
— E.g.: removing duplicates in DISTINCT
e Often good enough to match all tuples with equal field-
values
e Hashing does this!
— And may be cheaper than sorting! (Hmmm...!)
— But how to do it for data sets bigger than memory??

ﬁ General ldea

e Two phases:
— Partition: use a hash function /1, to split tuples into
partitions on disk.
« We know that all matches live in the same partition.
» Partitions are “spilled” to disk via output buffers

— ReHash: for each partition on disk, read it into
memory and build a main-memory hash table
based on a hash function #,

e Then go through each bucket of this hash table to bring
together matching tuples

10

(0] al
-Two Phases R;'éil.“on

OuUTPUT Partitions
1
" I
INPUT
2
» Partition: > [] fuiiilon oo DJQ]()D
hp B-1
D B-1
Disk B main memory buffers Disk
Partitions — Result
— Hash tablefor partition
hash R; (ki <= B pages)
e Rehash: N fn
oo h | |[C1O O
o0 O
o0 0 |:| |:| |:|
O 00 O
~
Disk B main memory buffers

==
- Analysis

e How big of a table can we hash in one pass?

— B-1 “spill partitions” in Phase 1
— Each should be no more than B blocks big
— Answer: B(B-1).

< Said differently: We can hash a table of size N blocks in about
space 4/N

— Much like sorting!
Have a bigger table? Recursive partitioning!

— In the ReHash phase, if a partition b is bigger than B, then
recurse:

e pretend that b is a table we need to hash, run the Partitioning
phase on b, and then the ReHash phase on each of its
(sub)partitions

11

Hash GROUP BY: Naive Solution
(similar to the Sort GROUPBY)

Aggregate

The Hash iterator permutes its input so that all tuples
are output in sequence (how?)
The Aggregate iterator keeps running info (“transition
values™) on agg functions in the SELECT list, per group
— E.g., for COUNT, it keeps count-so-far
— For SUM, it keeps sum-so-far
— For AVERAGE it keeps sum-so-far and count-so-far
When the Aggregate iterator sees a tuple from a new
group:
1. It produces an output for the old group based on the agg
function
E.g. for AVERAGE it returns (sum-so-far/count-so-far)
2. It resets its running info.
3. It updates the running info with the new tuple’s info

We Can Do Better!

HashAgg

Combine the summarization into the hashing process

— During the ReHash phase, don’t store tuples, store pairs of
the form <GroupVals, TransVals>

— When we want to insert a new tuple into the hash table
« If we find a matching GroupVals, just update the TransVals
appropriately
e Else insert a new <GroupVals, TransVals> pair
What'’s the benefit?
— Q: How many pairs will we have to handle?
— A: Number of distinct values of GroupVals columns
» Not the number of tuples!!
— Also probably “narrower” than the tuples
Can we play the same trick during sorting?

12

g
- Even Better: Hybrid Hashing

What if the set of <GroupVals,TransVals> pairs fits in
memory

— It would be a waste to spill it to disk and read it all back!
— Recall this could be true even if there are fons of tuples!

Idea: keep a smaller 1st partition in memory during
phase 1!

— Output its stuff Original _k-buffer hashtable

at the end of Relation |[T][] «.. []|OUTPUT Partitions
Phase 1. —|0 - 2
— Q: how do we ;/Jj [] (] 2
choose the h 3
number k? INPUT Y .o DJ;[D
—>[] h, B-k
D B-k
Disk B main memory buffers Disk

=
- A Hash Function for Hybrid Hashing

Assume we like the hash-partition function h,
Define h, operationally as follows:
— hy(x) = 1if in-memory hashtable is not yet full
— hy(x) = 1if x is already in the hashtable
- hy(x) = h,(x) otherwise
This ensures that:
— Bucket 1 fits in k Original _k-buffer hashtable

pages of memory Relation [J[] ... []|OUTPUT | Partitions
— If the entire set of ———— Ve 2
distinct hashtable oo /Jj] L] 2
entries is smaller ¥
than k, we do INPUT h, OO0 |3
no spifling! e
_)|:| hh Bk 600
Disk B main memory buffers Disk

13

g
- Context

» WelookedatSQL
» We looked at Query i SQLQuery

Execution QUEry Optimization
— Query plans & nd Execution
Iterators

tional Operators

— A specific example
e How do we map from
SQL to query plans? Buffer Management

d Access Methods

Disk Space Management

e

g
- Query Optimization

A deep subject, focuses on multi-table queries
— We will only need a cookbook version for now.
e Build the dataflow bottom up:
— Choose an Access Method (HeapScan or IndexScan)
« Non-trivial, we'll learn about this later!
Next apply any WHERE clause filters
Next apply GROUP BY and aggregation
e Can choose between sorting and hashing!
Next apply any HAVING clause filters
Next Sort to help with ORDER BY and DISTINCT
« In absence of ORDER BY, can do DISTINCT via
hashing!
Note: Where did SELECT clause go?
e Implicit!!

14

ﬁ Summary

e Single-table SQL, in detalil
e EXposure to query processing architecture
— Query optimizer translates SQL to a query plan

— Query executor “interprets” the plan
¢ Query plans are graphs of iterators

e Hashing is a useful alternative to sorting
— For many but not all purposes

15

