Relational Algebra

15-415 Spring 2003, Lecture 9
R & G, Chapter 4

By relieving the brain of all unnecessary
work, a good notation setsit free to
concentrate on more advanced problems,
and, in effect, increases the mental power of
therace.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

e Query languages: Allow manipulation and retrieval of
data from a database.

e Relational model supports simple, powerful QLs:
— Strong formal foundation based on logic.
— Allows for much optimization.

e Query Languages !'= programming languages!
— QLs not expected to be “Turing complete”.
— QLs not intended to be used for complex calculations.
— QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra:. More operational, very
useful for representing execution plans.

Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-procedural, declarative.)

< Understanding Algebra & Calculus is key to
understanding SQL, query processing!

ﬁ Preliminaries

e A query is applied to relation instances, and the
result of a query is also a relation instance.

— Schemas of input relations for a query are fixed (but
query will run over any legal instance)

— The schema for the result of a given query is also
fixed. Itis determined by the definitions of the query
language constructs.

« Positional vs. named-field notation:

— Positional notation easier for formal definitions,

named-field notation more readable.

— Both used in SQL

ﬁ Relational Algebra: 5 Basic Operations

e Selection (o) Selects a subset of rows from
relation (horizontal).

e Projection (71) Retains only wanted columns
from relation (vertical).

e Cross-proguct (X) Allows us to combine two
relations.

e Set-difference (-) Tuples in rl, but not in r2.

e Union (D) Tuples in rl and/or in r2.

Since each operation returns a relation, operations can
be composed! (Algebra is “closed”.)

ﬁEXample Instances R |Sd |bid | day
22 1101 |10/10/96

58 103 |11/12/96

g1 |Sd [sname |rating |age

bid bname | color 22 |dustin 7 45.0

101 | Interlake | blue 31 |lubber | 8 |55.5

102 | Interlake |red 58 |rusty 10 |35.0
103 |Clipper |green _ _

104 Marine |red S2 |sd |sname |rating |age

28 |yuppy 9 35.0

soats 31 |luber | 8 555

44 |guppy 5 35.0

58 |rusty 10 |35.0

ﬁ Projection

- Examples: 7lagel™®) ; Mlgname rat g™
e Retains only attributes that are in the “projection

/ist”.

e Schema of result:

— exactly the fields in the projection list, with the
same names that they had in the input relation.

e Projection operator has to eliminate duplicates
(How do they arise? Why remove them?)

— Note: real systems typically don’t do duplicate
elimination unless the user explicitly asks for it.
(Why not?)

sname |rating

yuppy |9
lubber |8
guppy |3
rusty 10

Projection

sd |sname |rating |age

28 |yuppy | 9 35.0

31 |lubber | 8 55.5

44 |guppy 5 35.0

58 |rusty 10 |35.0
S2

nsnamerati ng

age
35.0
55.5

nage(sz)

(S2)

ﬁ Selection (O)

e Selects rows that satisfy selection condition.
e Result is a relation.

Schema of result is same as that of the input
relation.

e Do we need to do duplicate elimination?

Si sname | rating
yuff,}/, 8 j 0 sname |rating
ZE‘-Q‘;;E 5 abg | yuppy |9
58 rusty | 10 [35.0 rusty |10
| rat' ng-> 8(=) Mlsnamerat ng(ar ating> g>)

ﬁ Union and Set-Difference

e All of these operations take two input relations,
which must be union-compatible:

— Same number of fields.
— ~Corresponding’ fields have the same type.

e For which, if any, is duplicate elimination
required?

ﬁ Union

sd |sname |rating |age sid Zname rating |age
. 22 ustin |7 45.0
22 [dustin 71450 gy per '8 555
31 |lubber ' 8 1555 |5 lrusty 10 |35.0
s1 28 |yuppy |9 35.0
sid |sname |rating |age S S2
28 |yuppy @ 9 35.0
31 |lubber | 8 55.5
44 guppy | S 35.0
58 |rusty 10 [35.0
S2
ﬁ Set Difference
sid sname |rating |age sid [sname |rating |age
22 |dustin 7 45.0 22 |dustin |7 45.0
31 |lubber | 8 55.5 Q-
58 |rusty 10 |35.0
S1
sd |sname |rating age | |sid sname |rating lage
28 |yuppy | 9 350 | |28 |yuppy | 9 [35.0
31 |lubber | 8 99.5 | |44 |guppy | 5 35.0
44 guppy | S 35.0
58 |rusty 10 |35.0 S-Sl

S2

ﬁ Cross-Product

e S1 x R1: Each row of S1 paired with each row of R1.

e Q: How many rows in the result?

e Result schema has one field per field of S1 and R1,
with field names "inherited’ if possible.

— May have a naming confiict. Both S1 and R1 have
a field with the same name.

— In this case, can use the renaming operator-

0(C(L— sidL5 - sid2), SLxRY)

ﬁCross Product Example

sd |bid day sid |sname rating age
22 101 |10/10/96 22 |dustin | 7 1450
58 1103 |11/12/96 31 |lubber | 8 555
58 |rusty 10 |35.0
R1 s1
(sid) |sname |rating |age |(sid) |bid |day
22 |dustin 7 45.0 | 22 |101 |10/10/96
R1 X S1 = 22 |dustin | 7 |450 | 58 103 |11/12/96
31 |lubber 8 55.5 | 22 |101 |10/10/96
31 |lubber 8 55.5 | 58 |103 |11/12/96
58 [rusty 10 |35.0 | 22 |101 |10/10/96
58 |rusty 10 |35.0 | 58 |103 [11/12/96

ﬁ Compound Operator: Intersection

e In addition to the 5 basic operators, there are
several additional “Compound Operators”

— These add no computational power to the
language, but are useful shorthands.

— Can be expressed solely with the basic ops.

e Intersection takes two input relations, which
must be union-compatible.

e Q: How to express it using basic operators?
RnS=R -(R-Y95)

ﬁ Intersection

sid |sname |rating age
22 |dustin | 7 45.0
31 |lubber | 8 55.5

58 |rusty 10 135.0 sid |sname |rating

S1

age
31 |lubber |8 55.5
58 |rusty 10 35.0

sd |sname |rating |age

28 |yuppy | 9 |35.0 Slﬂ 82

31 |lubber | 8 55.5
44 |guppy | 5 35.0
58 |rusty 10 |35.0

S2

ﬁ Compound Operator: Join

e Joins are compound operators involving cross
product, selection, and (sometimes) projection.

e Most common type of join is a “natural joiri’ (often
just called “join”). RP><IS conceptually is:
— Compute R X S

— Select rows where attributes that appear in both relations
have equal values

— Project all unique atttributes and one copy of each of the
common ones.

e Note: Usually done much more efficiently than this.

e Useful for putting “normalized” relations back
together.

ﬁNatural Join Example

sd |bid day sid |sname |rating age
22 101 |10/10/96 22 |dustin | 7 |45.0
58 (103 11/12/96 31 |lubber 8 55.5
58 |rusty 10 |35.0
R1 o1
R1D><1S1 =

sid |sname |rating |lage |bid |day

22 dustin |7 45.0 |101 |10/10/96
58 rusty |10 35.0 /103 |11/12/96

ﬁ Other Types of Joins

e Condition Join (or “theta-join”):

R =0 (Rx9

(sid) |sname |rating |age |(sid) |bid |day

22 dustin |7 45.0 |58 103 |11/12/96
31 lubber |8 55.5 |58 103 |11/12/96
Slsid<Rlsid Rl

e Result schema same as that of cross-product.

e May have fewer tuples than cross-product.

e Equi-Join: Special case: condition ¢ contains
only conjunction of equalities.

ﬁ Compound Operator: Division

e Useful for expressing “for all” queries like:
Find sids of sailors who have reserved all boats.

e For A/B attributes of B are subset of attrs of A.
— May need to “project” to make this happen.

e E.g., let A have 2 fields, xand y; B have only
field -

A8 = {(x|0ly) 0 B(Hx) O A}

A/B contains all x tuples such that for every y
tuple in B, there is an xy tuple in A.

10

Examples of Division A/B

sno |pno pno pno pno
sl |pl p2 p2 pl
sl |p2 B1 p4 p2
i 2
s2 |pl sno B3
s2 |p2 sl
s3 |p2 S2 sno
s4 |p2 s3 sl sno
s4 |pd s4 s4 sl

A A/B1 A/B2 A/B3

Expressing A/B Using Basic Operators
e Division is not essential op; just a useful shorthand.
— (Also true of joins, but joins are so common that systems
implement joins specially.)
e Idea. For A/B, compute all xvalues that are not
“disqualified’ by some yvalue in B.

— xvalue is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 71 y (72 y (A)xB)—A)

A/B: T X(A) — Disqualified x values

11

ﬁ sid |bid day
Reserves
Examp|es 22 |101 10/10/96
58 |103 [11/12/96
sid |sname |rating |age
Sailors |22 dustin 7 45.0
31 |lubber 8 55.5
58 |rusty 10 |35.0
Boats bid | bname |color
101 |Interlake |Blue
102 | Interlake |Red
103 | Clipper |Green
104 |Marine |Red

Find names of sailors who've reserved boat #103

e Solution 1: 71

- Solution 2: ﬂsname(abid =103

sname((T g 103

Reserves) <1 Sailors)

(Reservesr< Sailors))

12

Find names of sailors who've reserved a red boat

* Information about boat color only available in
Boats; so need an extra join:

nsname((acolor ~red' Boats) >« Reservesp>< Sailors)

< A more efficient solution:

7 sname g4 (i 4 P color = req BOS) >< Res)>a Sailors)

<1 A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat
e Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

p (Tempboats, (o Boats))

color =red' [color="green’

Tl o(Tempboats>< Reserves>< Sailors)

Sham

13

Find sailors who've reserved a red and a green boat

e Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors who’ve
reserved green boats, then find the intersection
(note that sidis a key for Sailors):

p (Tempred, e d((a Boats)>< Reserves))

color =red'

0 (Tempgreen, M4y ((o Boats)><1 Reserves))

color = green

N gnamel(Tempred n Tempgreen) o< Sailors)

Find the names of sailors who've reserved all boats

e Uses division; schemas of the input relations to
/ must be carefully chosen:

p (Tempsids, (71 Reserves) / (71, . ,Boats))

sid,bid
7 sname (T€MPSIds>< Sailors)

bid

<« To find sailors who’ve reserved all ‘Interlake’ boats:

""" / nbid (o bname='Interlake Boats)

14

