Relational Algebra

15-415 Spring 2003, Lecture 9 R & G, Chapter 4

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

<u>Relational Algebra</u>: More operational, very useful for representing execution plans.

<u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

☑ Understanding Algebra & Calculus is key to understanding SQL, query processing!

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run over any legal instance)
 - The schema for the *result* of a given query is also fixed. It is determined by the definitions of the query language constructs.
- · Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.

S

S2

- Both used in SQL

Relational Algebra: 5 Basic Operations

- <u>Selection</u> (σ) Selects a subset of *rows* from relation (horizontal).
- <u>Projection</u> (π) Retains only wanted *columns* from relation (vertical).
- <u>Cross-product</u> (X) Allows us to combine two relations.
- Set-difference (-) Tuples in r1, but not in r2.
- <u>Union</u> (∪) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be *composed!* (Algebra is "closed".)

Example Instances R

21	sid	bid	day
	22	101	10/10/96
	58	103	11/12/96

bid	bname	color	
	Interlake		
102	Interlake	red	
103	Clipper	green	
104	Marine	red	

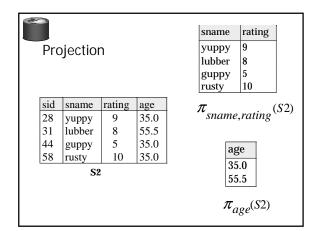
Boats

1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection

- Examples: $\pi_{age}(S2)$, $\pi_{sname,rating}(S2)$
- Retains only attributes that are in the "projection list"
- · Schema of result:
 - exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to *eliminate duplicates* (How do they arise? Why remove them?)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)



Selection (σ)

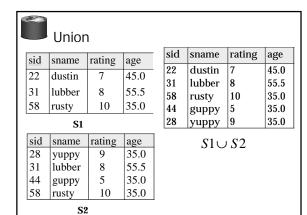
- · Selects rows that satisfy selection condition.
- · Result is a relation.
 - **Schema** of result is same as that of the input relation.
- Do we need to do duplicate elimination?

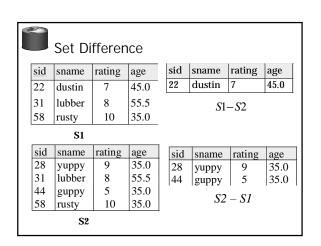
sid	sname	rating	ag	e	
28	yuppy	9	35	0.0	
3	lubber	8	5.	.5	
44	guppy	5	3.	5.0	
58	rusty	10	3:	5.0	
	σ .	(S2))		$\pi_{_{\alpha}}$
$\sigma_{rating>8}^{(S2)}$					

	sname	rating		
	yuppy	9		
	rusty	10		
$name, rating$ $(\sigma_{rating} > 8^{(S2)})$				

Union and Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?





Cross-Product

- S1 x R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - May have a naming conflict: Both S1 and R1 have a field with the same name.
 - In this case, can use the *renaming operator*. ρ (C(1 \rightarrow sid1,5 \rightarrow sid2), S1 \times R1)

€	Cross Product Example										
	sid	bid		day			sid	snam	ie	rating	age
	22	101	10	/10/9	6		22	dusti	n	7	45.0
	58	103	11	/12/9	6	ĺ	31	lubbe	er	8	55.5
							58	rusty	.	10	35.0
		R	L						S1		
				(sid)	sname	rating	age	(sid)	bid	day	
				22	dustin	7	45.0	22	101	10/10/9	96
	R1 X	S1 =		22	dustin	7	45.0	58	103	11/12/9	96
				31	lubber	8	55.5	22	101	10/10/9	96
				31	lubber	8	55.5	58	103	11/12/9	96
			58	rusty	10	35.0	22	101	10/10/9	96	
			58	rusty	10	35.0	58	103	11/12/9	96	

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
 - These add no computational power to the language, but are useful shorthands.
 - Can be expressed solely with the basic ops.
- · Intersection takes two input relations, which must be union-compatible.
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

Intersection

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

51				
sid	sname	rating	age	
28	yuppy	9	35.0	
31	lubber	8	55.5	
44	guppy	5	35.0	
58	rusty	10	35.0	

S2

S1	$\cap S$	2
----	----------	---

rusty

58

sid sname rating age lubber 8

10

55.5

35.0

Compound Operator: Join

- · Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "natural join" (often just called "join"). R ⋈ S conceptually is:
 - Compute R X S
 - Select rows where attributes that appear in both relations have equal values
 - Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.
- Useful for putting "normalized" relations back together.

Natural Join Example

sid	bid	day			
22	101	10/10/96			
58	103	11/12/96			
R1					

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

R1 ⋈S1 =

	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Other Types of Joins

• <u>Condition Join (or "theta-join")</u>: $R \bowtie_{C} S = \sigma_{C}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$
 $R1$

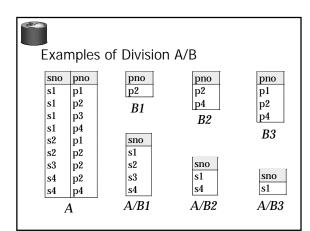
- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- <u>Equi-Join</u>: Special case: condition c contains only conjunction of equalities.

Compound Operator: Division

- Useful for expressing "for all" queries like: Find sids of sailors who have reserved <u>all</u> boats.
- For A/B attributes of B are subset of attrs of A.
 May need to "project" to make this happen.
- E.g., let A have 2 fields, x and y, B have only field y:

$$A/B = \{\langle x \rangle | \forall \langle y \rangle \in B(\exists \langle x, y \rangle \in A) \}$$

A/B contains all x tuples such that for <u>every</u> y tuple in B, there is an xy tuple in A.

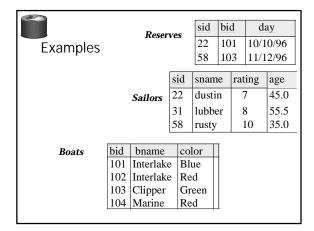


Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not 'disqualified' by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Disqualified x values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$

A/B: $\pi_{\chi}(A)$ – Disqualified x values



Find names of sailors who've reserved boat #103

• Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \textit{Sailors})$

• Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves}\bowtie \textit{Sailors}))$

Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{\mathit{sname}}((\sigma_{\mathit{color} = '\mathit{red}'}, \mathit{Boats}) \bowtie \mathsf{Re}\,\mathit{serves} \bowtie \mathit{Sailors})$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}^{}Boats)\bowtie Res)\bowtie Sailors)$$

☑ A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho\ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}\ \textit{Boats}))$$

$$\pi_{sname}$$
(Tempboats \bowtie Reserves \bowtie Sailors)

Find sailors who've reserved a red and a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho \; (Tempred, \pi_{sid}((\sigma_{color = 'red'} \; Boats) \bowtie \; Reserves))$$

$$\rho$$
 (Tempgreen, π_{sid} (($\sigma_{color='green'}$, Boats) \bowtie Reserves))

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho \; (Tempsids, (\pi \atop sid, bid {\sf Re} \; serves) \; / \; (\pi \atop bid \; Boats))$$

$$\pi_{sname}$$
 (Tempsids \bowtie Sailors)

* To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake'}Boats)$$