
1

Access Path Selection in
System R

Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2001 Anastassia Ailamaki

Query Processing Phases

! Parsing

! Optimization

! Code Generation

! Execution

3© 2001 Anastassia Ailamaki

Access Paths

! Segment (Relation) Scan - each page is
accessed exactly once

! Index Scan (B+ Tree)
! Clustered.
! each index page is touched once
! each data page is touched once
! Unclustered.
! each index page is touched once
! each tuple may be touched once, but each page may

be fetched multiple times

4© 2001 Anastassia Ailamaki

Join Methods

! Nested Loops
! Sort-merge
! Hash join

! Access path is orthogonal choice

5© 2001 Anastassia Ailamaki

Useful Definitions

! A SARGable predicate:
attribute op value

! A SARG (Search ARGument for scans) :
a boolean expression of the SARGable
predicates in disjunctive normal form:
SARG1 or SARG2 or … or SARGn
(SARG1 and … and SARGn) or
(SARGn+1 and … and SARGq) or …

6© 2001 Anastassia Ailamaki

Definitions (cont.)

! A predicate (or set of predicates) matches an index
when

predicates are SARGable, and

columns in the predicate are initial substring of index key

2

7© 2001 Anastassia Ailamaki

Example

! Index: name, location

Predicates:
“name = smith” matches index
“name = smith or name = jones” matches
“name = smith and location = San Jose”
matches
“(name = x and location = z) or (name = y and
location = q)” matches

8© 2001 Anastassia Ailamaki

Definitions (cont.)

! An ordering of tuples is interesting if it is an
ordered needed for a

! GroupBy,
! OrderBy, or
! Join

9© 2001 Anastassia Ailamaki

Single-Relation: Cost Model

! Cost of a Query = # page fetches + W(#RSI Calls)

! W is a weighting factor
! pages fetched vs. instructions executed
! low for I/O bound machines
! high for CPU bound machines

10© 2001 Anastassia Ailamaki

Statistics for Optimization

! NCARD (T) - cardinality of relation T in tuples
! TCARD (T) - number of pages containing tuples

from T
! P(T) = TCARD(T)/(# of non-empty pages in the

segment)
! If segments only held tuples from one relation there

would be no need for P(T)

! ICARD(I) - number of distinct keys in index I
! NINDX(I) - number of pages in index I

11© 2001 Anastassia Ailamaki

Comments

! statistics not updated with each insert/delete/modify
statement

! generated at load time

! update periodically using the update statistics
command

12© 2001 Anastassia Ailamaki

Step #1 of Query Optimization

! Calculate a selectivity factor ‘F’ for each boolean
factor in the predicate list

! Single-relation access paths

! Formulae on the board

3

13© 2001 Anastassia Ailamaki

Predicate Selectivity Estimation

F = 1 – F(expr)NOT expr

F = F(expr1) * F(expr2)expr1 and expr2

F = F(expr1)+F(expr2)–F(expr1)*F(expr2)expr1 or expr2

F = (value2-value1)/(high key-low key)
F = 1/4 otherwise

val1 < attr < val2

F = 1/max(ICARD(I1),ICARD(I2)) or
F = 1/ICARD(Ii) – if only index i exists, or
F = 1/10

attr1 = attr2

F = 1/ICARD(attr index) – if index exists
F = 1/10 otherwise

attr = value

14© 2001 Anastassia Ailamaki

Comments

! Query cardinality is the product of the relation
cardinalities times the selectivities of the query’s
boolean factor
QCARD= |R1|*|R2|* ... * |Rn|*FR1*FR2*... * FRn,

! RSICARD (# RSI calls performed) = |R1|*|R2|* .;*
|Rn|*selectivity factors of all SARGABLE boolean
factors

15© 2001 Anastassia Ailamaki

Step #2 of Query Optimization

! For each relation, calculate the cost of scanning
the relation for each suitable index + a segment
scan

! What is produced:
i) Cost C in the form of # pages fetched +
W*RSICARD

ii) Ordering of tuples the access path will produce

16© 2001 Anastassia Ailamaki

Costs per Access Path Case

TCARD/P + W*RSICARDSegment scan

F(preds)*(NINDX(I)+TCARD)+W*RSICARDClustered index I
matching >=1
preds

F(preds)*(NINDX(I)+NCARD)+W*RSICARD
…or if buffer pool large enough…
F(preds)*(NINDX(I)+TCARD)+W*RSICARD

Non-clustered
index I matching
>=1 preds

1+1+WUnique index
matching equal
predicate

17© 2001 Anastassia Ailamaki

Joins - Definitions

! Outer relation - tuple retrieved first from here

! Inner relation - tuples retrieved (possible based
on outer tuple join value)

! Join predicate - relates columns of inner/outer
relations

18© 2001 Anastassia Ailamaki

Two join methods considered

! Nested loops - scan inner for each outer tuple

! Merge scans - scan in join column order (via
index or after sorting)

! N-way joins are performed as a sequence of 2-
way joins
! Can pipeline if no sort step is required

4

19© 2001 Anastassia Ailamaki

Join Order Issues

! Cardinality of result is the same regardless of the
join order

! N! orders for N-way join (in general)
! After k relations have been joined, method to add

in (k+1)st is independent of the order for the 1st k
(helps organize search)

! Join orders considered only when there is an inner
- outer join predicate (and outer is all relations
joined so far), except if all cross-products

20© 2001 Anastassia Ailamaki

Example
R1 join R2 and R2 join R3 on a different column
Consider
! R1 join R2 join R3
! R2 join R1 join R3
! R3 join R2 join R1
! R2 join R3 join R1

Forget
! R1 join R3 join R2
! R3 join R1 join R2

21© 2001 Anastassia Ailamaki

Join Optimization Algorithm

1.Find best way to access each relation for each
interesting tuple order and for the unordered case

2.Best way of join any relation to these if found "
produces solutions for joining pairs of relations

3.Find the best way of joining sets of three relations
by considering all sets of two relations and joining
in each third relation permitted by the join order
heuristic

4.Continue adding additional relations via step 3

5.Choose cheapest path from root to leaf

22© 2001 Anastassia Ailamaki

Cost Formulae for Joins
Pi=access path

Nested Loops: CostNLjoin = Couter (P1) + N*Cinner (P2)
N is the number of outer tuples satisfying predicate

Merge Joins: CostMSjoin = Couter(P1) + N*Cinner (P2)
Since both are assumed to be sorted,

Cinner = #inner pages/N +W*RSICARD

Note: same except for Cinner(P2) is cheaper (potentially) in
merge joins case:

CostSort = CostScanPath + CostDoSortItself + CostWriteTempFile

23© 2001 Anastassia Ailamaki

Search Tree
! Tree for possible query processing strategies:

! Root -> leaf path represents a way of processing query
! Label edges with costs, orderings
! Tree considers all reasonable options

! Access paths
! Orderings of tuples
! Join Orderings

! Trees for both nested loops and merge joins

! Always take the cheapest way for the various interesting
orders and prune more expensive equivalent plans

24© 2001 Anastassia Ailamaki

Optimization Example

! Assume the following database schema:
Emp (name, dno, job, salary), indices dno (clustered),

job (unclustered)
Dept (dno, name, loc), indices dno (clustered)
Job (job, title) index job (clustered)

! Consider optimization of the following query:
select Emp.name, Emp.salary, Job.title, Dept.name
from Emp, Dept, Job
where title=”clerk” and location =“Denver”

and Emp.dno = Dept.dno
and Emp.job = Job.job

5

25© 2001 Anastassia Ailamaki

Optimization Example (cont.)

! Eligible predicates: Local predicates only

! “Interesting” orders: DNO, JOB

26© 2001 Anastassia Ailamaki

Access Paths for Single Relations

EMP:

N1
C(EMP.DNO)

index
EMP.DNO

N1
C(EMP.JOB)

index
EMP.JOB

N1
C(EMP seg.scan)

segment scan
on EMP

N2
C(DEPT seg.scan)

segment scan
on DEPT

N2
C(DEPT.DNO)

index
DEPT.DNODEPT:

N3
C(JOB seg.scan)

segment scan
on JOB

N3
C(JOB.JOB)

index
JOB.JOBJOB:

27© 2001 Anastassia Ailamaki

Search Tree for Single Relations

index
EMP.JOB

index
DEPT.DNO

N1
C(EMP.DNO)
DNO order

index
EMP.DNO

EMP

N1
C(EMP.JOB)
JOB order

N2
C(DEPT.DNO)
DNO order

segment scan
JOB

N3
C(JOB.JOB)
JOB order

index
JOB.JOB

JOB

N1
C(JOB SS)
unordered

DEPT

! It gets really complex as soon as we start
considering joins (look at paper)!

28© 2001 Anastassia Ailamaki

Complexity Considerations

! Exponential in N (the # of relations being joined
! Fortunately N is pretty small (<= 3) in practice
! How about # join methods considered?

! Pays off for compiled queries

! Can use heuristics for ad hoc queries
! if the estimated execution time exceeds the time spent

optimizing, quit optimizing and simply run the query

29© 2001 Anastassia Ailamaki

Closing Remarks

! They also deal with “nested queries”, both
simple ones and “correlated” ones

! Cost turns out to be good for most reasonable
queries
! Relative (not absolute) accuracy is what matters

! use of statistics (newer, better work out now)
! consideration of CPU utilization and I/O activity
! selectivity factors, etc
! interesting orders save sorting unnecessarily

30© 2001 Anastassia Ailamaki

Selectivity Histograms

! First found in Commercial INGRES (Koi, Ph.D.
Thesis)

! Divide attribute domains into fixed range buckes,
count number of hits for each bucket:

! Given a range query, base the selectivity
estimate on the histogram data

6

31© 2001 Anastassia Ailamaki

Example

Histogram on age (152 values total)

consider the selection:
EMP[15 <= AGE <= 25]

Est. Selectivity = [(5*7)/10+(6*62)/10]/152 = 0.27
(instead of using 0.10 w/ uniform assumption!)

range # of values in range
0-9 3

10-19 7
20-29 62

... ...
90-99 1

32© 2001 Anastassia Ailamaki

Overview of Query Optimization

! Chaudhuri, PODS 1998
! Query optimization =

search space of plans +
(low-cost plans)

cost estimation technique +
(accurate)

enumeration algorithm
(efficient)

33© 2001 Anastassia Ailamaki

System R Optimizer

! Principle of optimality: To perform k joins
! Find optimal plans for k-1 joins
! Extend plans for one more join

! Interesting orders
! Extended to physical properties in Exodus
! Property that can impact subsequent operations

