
1

15-721 Database Management Systems

Optimistic Concurrency Control

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2005 Anastassia Ailamaki

Optimistic CC (Kung&Robinson)

Assumption: conflicts are rare
Optimize for the no-conflict case.
All transactions consist of three phases

Read: Here, all writes are to private storage.
Validation: Make sure no conflicts have occurred.
Write: If Validation was successful, make writes
public. (If not, abort!)

ValidationRead Phase Write Phase

All writes private Check for conflicts Make local writes public

3© 2005 Anastassia Ailamaki

When Might this Make Sense?

All transactions are readers
Lots of transactions, each accessing/modifying
only a small amount of data, large total amount of
data

Low probability of conflict, so again locking is wasted
Fraction of transaction execution in which conflicts
“really take place” is small compared to total path
length

Locks until end of Xact are way too restrictive most of
the time

2

4© 2005 Anastassia Ailamaki

Validation Phase (1)

Goal: guarantee only serializable schedules
(Intuitively: at validation, Tj checks its ‘elders’

for RW and WW conflicts)
Validation technique:
Assign each transaction a TN (transaction #)
(TN order is the serialization order)

If TN(Ti) < TN(Tj) ⇒ ONE of the following must hold:

5© 2005 Anastassia Ailamaki

Validation Phase

1. Ti completes W before Tj starts R

R V WTi
R V WTj

6© 2005 Anastassia Ailamaki

Validation Phase (2)

2. WS(Ti) ∩ RS(Tj) = ∅ and Ti completes W
before Tj starts W

Comments:
No problem with Tj reading values previous to Ti’s
writes (nothing in common there)
No problem with Ti overwriting Tj’s writes (no overlap
in time)

R V WTi

R V WTj

3

7© 2005 Anastassia Ailamaki

Validation Phase (3)

3. WS(Ti) ∩ RS(Tj) = ∅ and
WS(Ti) ∩ WS(Tj) = ∅ and
Ti completes its R before Tj completes its R

R V WTi

R V WTj

8© 2005 Anastassia Ailamaki

Validation Phase (cont’d)

Comments:
No problem with Tj getting (or missing) input
from Ti, as there is nothing that Ti writes that
Tj touches
Since Ti finishes its R before Tj finishes its R,
Ti won’t read any output from Tj either
No overwrite problems as write-sets are
disjoint

9© 2005 Anastassia Ailamaki

Correctness

All of conflict types (WR, RW, WW) go one
way
Condition 1: true serial execution
Condition 2

No W-R conflicts since WS(Ti) intersect RS(Tj) = NULL
In R-W conflicts, Ti precedes Tj, since Ti’s W (and hence
R) of Ti precedes that of Tj
In W-W conflicts, Ti precedes Tj by definition

4

10© 2005 Anastassia Ailamaki

Correctness (cont’d)

Condition 3
No W-R conflicts since WS(Ti) intersect RS(Tj) =
NULL
No W-W conflicts since WS(Ti) intersect WS(Tj) =
NULL
In all R-W conflicts, Ti precedes Tj, since the Ti’s R
precedes Tj’s W

11© 2005 Anastassia Ailamaki

Observations

When to better assign TN’s?
at beginning of read phase: Tj has to wait...

R V WTi

R V WTj

Tj has to wait
for V(Ti)!

12© 2005 Anastassia Ailamaki

Observations

When to better assign TN’s?
at beginning of validation phase:

Tj can start
condition (3): automatic!

R V WTi

R V W
Tj

Tj takes TN before Ti

5

13© 2005 Anastassia Ailamaki

Observations (cont’d)

BUT: subtle problem: T with very long R!
must check ALL T’s within its lifetime!!!
Requires unbounded buffer space. Solution?
Bound buffer, toss out when full, abort
possibly affected Ts
Starvation!

Serial/Parallel validation – Pros & cons?

14© 2005 Anastassia Ailamaki

A Serial Validation Technique

Goal: to ensure conditions 1 and/or 2 above.

Requires that write phases be done serially.

Ti
R V W

start_tn finish_tn

Critical section{all xacts
that started here}

15© 2005 Anastassia Ailamaki

Serial Validation Algorithm

1.Record start_tn when Xact starts (to
identify active Xacts later)

2.Obtain the Xact’s real Transaction Number
(TN) at the start of validation phase

3.Record read set and write set while
running and write into local copy

4.Do validation and write phase inside a
critical section

6

16© 2005 Anastassia Ailamaki

Serial Validation: Critical Section
beginCriticalSection
finish_tn := currentTN; /* tentatively assign tn */
valid := true;
for T from start_tn + 1 to finish_tn do

if (write set of Xact T intersects read set)
then valid := false;

if valid
then { write phase; currentTN++; tn := currentTN }

endCriticalSection
if valid then cleanup() else backup();

17© 2005 Anastassia Ailamaki

Serial Validation (cont.)

Optimization: Do not assign TN (TID) unless success!

Informally,
1. check current TN;
2. check everything from start until current TN;
3. then enter critical region and do the rest.

Read-only Xacts are not assigned TNs; just check
write sets of Xacts with start_tn < TN < finish_tn

18© 2005 Anastassia Ailamaki

A Serial Validation Technique

Optimization: move some of the validation
outside the critical section.

Ti
V W

start_tn finish_tn
Critical section

mid_tn

{examine xacts in
(start_tn,mid_tn)}

{examine rest}

7

19© 2005 Anastassia Ailamaki

A Serial Validation Technique

This can be repeated for 2nd, 3rd etc time!

Ti
V W

start_tn finish_tn
Critical section

mid_tn

{examine xacts in
(start_tn,mid_tn)}

{examine rest}

20© 2005 Anastassia Ailamaki

Parallel Validation

Only real difference:
now must check condition 3, using active, the
set of Xacts that have finished their read
phase but have not yet completed their write
phases.

Algorithm: in paper

Subtlety: A transaction may cause another
transaction to abort, and then abort itself!

21© 2005 Anastassia Ailamaki

Opt CC vs. Locking

Locking:
order is of first lock;
wait
on deadlock, abort

Optimistic cc
order is of t(i)
abort
on starvation, lock

8

22© 2005 Anastassia Ailamaki

Conclusions

Analysis [Agrawal, Carey, Livny, ‘87]:
dynamic locking performs very well, in most
cases

All vendors use locking
optimistic cc: promising for OO systems,
or when resource utilization is low.

23© 2005 Anastassia Ailamaki

Performance: Opt CC vs. Locking
With optimistic CC, conflicts are

found when the transaction is basically done
resolved by aborts/restarts (that waste CPU & I/O
resources)

With locking, conflicts are resolved by waits
With optimistic CC, updates incur a copy.
With locking, updates are performed in place
“Optimistic CC works well when conflicts are rare”
In that case, smart locking works well too
Optimistic CC incurs non-trivial cost of
maintaining read and write sets.

