
Abstract

Commercial applications are an important, yet often over-
looked, workload with significantly different characteris-
tics from technical workloads. The potential impact of
these differences is that computers optimized for technical
workloads may not provide good performance for commer-
cial applications, and these applications may not fully
exploit advances in processor design.  To evaluate these
issues, we use hardware counters to measure architectural
features of a four-processor Pentium Pro-based server
running a TPC-C-like workload on an Informix database.
We examine the effectiveness of out-of-order execution,
branch prediction, speculative execution, superscalar issue
and retire, caching and multiprocessor scaling. We find
that out-of-order execution, superscalar issue and retire,
and branch prediction are not as effective for database
workloads as they are for technical workloads, such as
SPEC. We find that caches are effective at reducing pro-
cessor traffic to memory; even larger caches would be
helpful to satisfy more data requests. Multiprocessor scal-
ing of this workload is good, but even modest bus utiliza-
tion degrades application memory latency, limiting
database throughput.

1 Introduction

Commercial applications are an important class of
applications with a large installed base. According to
Dataquest, commercial applications, such as transaction
processing and decision support database service, file ser-
vice, media and email service, print service, and custom
applications, were the dominant applications run on server
machines in 1995 and are projected to be the dominant
server applications in 2000 [25]. Commercial applications
comprised about 85% of the 1995 server market, and are

projected continue this dominance as the server market
grows 15 percent annually.  

Database workloads alone motivate the sale of vast
quantities of symmetric multiprocessing machines, and
hold the dominant fraction of the massively parallel com-
puting market [18]:  databases motivated 32% of the server
volume in 1995, and will motivate 39% of the 2000 server
volume [25]. Despite the widespread usage of commercial
applications, they are often ignored in preference to techni-
cal benchmarks, such as SPEC or LINPACK, in computer
architecture performance studies. This bias is due largely
to the lack of available representative multi-user traces of
commercial applications, the proprietary nature of database
performance information and source code, and the diffi-
culty of properly configuring a system to run typical data-
base benchmarks. 

Commercial and technical applications have signifi-
cantly different execution characteristics [15]. Commercial
applications generally have a large number (e.g., 100s to
1000s) of concurrent users. As a result, they typically have
high context switch rates and multiprogramming levels.
They spend a substantial portion of their execution in the
operating system. Commercial applications perform many
I/O operations, in a random access pattern, with data
spread over a wide portion of a disk. As a result, much of
their execution time is spent waiting for I/O completions.
Commercial applications perform data manipulation on
strings or integers, in comparison with the extensive float-
ing point activity in technical workloads. Unlike the small
instruction working sets and tight loops of technical appli-
cations, commercial applications execute fewer loop
instructions, and often use non-looping branch instructions.
Because of their branching behavior and data access pat-
terns, commercial applications have been less able to effec-
tively use the memory system of traditional workstation
and server architectures. 

The potential implication of these differences is pro-
found: computers optimized for technical workloads may
not provide good performance for commercial applica-
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tions, and these applications may not exploit advances in
processors at the same rate as SPEC. This problem is exac-
erbated by the fact that I/O and memory system perfor-
mance improvement rates lag far behind processor
performance improvements. As a result, it is important for
computer architects to consider a wide range of applica-
tions when designing and evaluating architectures, espe-
cially those intended to be used in SMPs.

In this paper, we use hardware counters to measure
architectural features of a four-processor Pentium Pro-
based server running a commercial database executing a
TPC-C-like workload. We vary several hardware and firm-
ware configuration parameters, such as L2 cache size, main
memory bandwidth, the number of processors and the
number of outstanding bus transactions, to evaluate hard-
ware design trade-offs. We examine the efficiency of cach-
ing, out-of-order execution, branch prediction, speculative
execution, superscalar issue and retire and multiprocessor
scaling. 

We find that overall (e.g., database and operating sys-
tem) CPI is roughly five times higher than the theoretical
minimum CPI for the architecture, and much higher than
the CPI of SPEC. Resource and instruction-related stalls
comprise the majority of these cycles. While out-of-order
execution is somewhat effective at hiding memory hierar-
chy latency and other stalls, it is less effective for database
workloads than for SPEC. The branch prediction algo-
rithms and hardware support do not work nearly as well for
database workloads. Superscalar issue and retire is only
marginally helpful for this workload. 

Not surprisingly, we found that caches are effective at
reducing the processor traffic to memory. Our data support
the rule of thumb that doubling the L2 cache size gives
about half the benefit seen from the previous doubling.
While larger caches are effective, this benefit is not with-
out consequences.  Coherence traffic, in the form of cache
misses to dirty data in other processors’ caches, increases
as caches get bigger, and as the number of processors
increases.  We find that the exclusive state of the four-state
MESI cache coherence protocol is under-utilized, and
could likely be omitted in favor of a simpler three-state
protocol. Finally, multiprocessor scaling of this workload
is good, but even modest bus utilization degrades applica-
tion memory latency, limiting database throughput.

Several recent studies began the examination of the
architectural impacts of transaction processing database
workloads for symmetric multiprocessors. Most of the
studies have focused on some variation of the now-defunct
DebitCredit benchmark, also known in various incarna-
tions as TP1, TPC-A, and TPC-B [1] [5] [15] [21] [24]
[26]. (This benchmark has been withdrawn by the Transac-
tion Processing Council.)  A few have examined the more
complex TPC-C order-entry workload [6] [15]. Only two
of these papers have explored the effectiveness of out-of-
order execution for the TPC-B workload [1] [24]. None
examine the effectiveness of out-of-order processors for
TPC-C.  In general, we observe that these papers corrobo-
rate our findings, with a few exceptions.  Because the

scope of the studies is vast, we defer the discussion of sim-
ilarities between our work and these related studies until
presenting our results in Section 3 through Section 6.

This paper is organized as follows. Section 2 describes
our experimental setup, including the configuration of our
server, the architecture of the Pentium Pro processor, and a
discussion of the TPC-C workload. It also presents our
methodology for collecting and analyzing counter data. We
discuss the decomposition of CPI in Section 3, and then
further explore its memory hierarchy component in Section
4 and its processor component in Section 5.  Multiproces-
sor scaling is explored in Section 6. Future research direc-
tions are presented in Section 7, and conclusions and our
recommendations to computer architects are stated in Sec-
tion 8.

2 Experimental setup

This section describes our experimental infrastructure,
including the configuration of our server and the architec-
ture of the Pentium Pro processor. We describe the work-
load used in this study, which is based on the TPC-C
benchmark, and discuss our methodology for collecting
and analyzing hardware counter data.

2.1  Measurement vs. simulation

Hardware measurement studies are typically limited to
reporting performance for today’s machines. To investi-
gate future architectural alternatives, researchers generally
employ simulation techniques.  Both approaches have
advantages and disadvantages.   Direct measurement of
real hardware means that software runs at full speed, which
implies that it is possible to run a fully configured database
OLTP application.  Real hardware also means that there is
no question of validation for the hardware model, only val-
idation of the instrumentation.  Unfortunately, measure-
ment usually implies that architectural parameters, such as
the number of functional units, reorder buffer entries, and
cache sizes, are fixed.  In addition, performance counters
may not be accurate, or may not provide the desired infor-
mation.  

In contrast, simulation allows researchers to explore
designs of the future.  There is no limitation to what can be
measured, offering arbitrary levels of detail.  The difficul-
ties with this approach are that validation of complex simu-
lators is quite difficult and simulations can run up to
10,000 times slower than real-time, making it difficult to
simulate large-scale fully configured systems.

In this study, we show that there is some middle ground
between these two approaches.  We measure a real
machine, but vary hardware parameters, including  second-
level cache size, memory bandwidth, the number of out-
standing bus transactions, and the number of processors, to
explore architectural trade-offs.  The flexibility in configu-
ration parameters afforded by our system allows us to over-



come some of the traditional limitations of measurement
approaches.  

2.2  SMP hardware architecture

Table 1 shows the system measured in this study, a
four-processor Intel-based SMP, which uses 200 MHz
Pentium Pro processors. We present detailed measure-
ments for this base system, and then modify various archi-
tectural parameters, such as L2 cache size, memory
bandwidth, and the number of processors, to study their
effects on performance.  We choose the four-processor
SMP as the base case since it is a building block for small-
to mid-range database servers.

Our base system consists of the quad Pentium Pro SMP,
populated with 4 GB of 4-way interleaved 60 ns main
memory. In NT 4.0, a process is limited to a 2 GB of user
space. Thus, only 2 GB of this memory is accessible to the
database server. In addition to the on-chip first-level
caches, each processor has a 1 MB L2 cache in the same
multichip module. The system is configured with 90 Quan-
tum 4.55 GB Ultra SCSI-3 disks that store the TPC-C
dataset. An additional 21 disks are used for performance
monitoring, development, and scratch space. The 90 data
disks are connected via three Adaptec dual channel SCSI-3
controllers. 

2.3  Overview of Pentium Pro processor architecture

Figure 1 shows the architecture of Intel’s Pentium Pro
processor. The Pentium Pro implements dynamic execu-
tion using an out-of-order, speculative execution engine,
which employs register renaming, non-blocking caches
and multiprocessor bus support. Intel IA-32 instructions
(i.e., macro-instructions) begin and end execution in pro-
gram order, in the “IN-ORDER SECTION” of Figure 1.
They are then translated into a sequence of simpler RISC-
like micro-operations (i.e., µops). µops are register
renamed and placed into the Reservation Station, an out-of

-order speculative pool of pending operations. Once their
data arguments and the necessary computational resources
are available, these µops are issued for execution in the
“OUT-OF-ORDER EXECUTION ENGINE.” After exe-
cution has completed, an instruction’s µops are held in the
Reorder Buffer until they can be retired, which may occur
only after all previous instructions have been retired, and
all of the constituent µops have completed. The Pentium
Pro retires up to three µops per clock cycle, yielding a the-
oretical minimum cycles per µop (CPµ) of 0.33. 

A more detailed description of the Pentium Pro’s archi-
tectural features can be found in [2] [3] [8] [11] [19]. We
will also present additional details in subsequent sections,
when discussing our measurement results.

2.4  Software architecture

We measured a tuned prototype version of Informix
Online Dynamic Server [10], running on Windows NT 4.0
with service pack 3.  Since this work began, there have
been new releases of these software products, with
improved performance.  For this reason and due to the
TPC-C reporting rules, we do not present absolute perfor-
mance numbers.

The database server uses multiple processes, which
exploit processor affinity to ensure that each process is run
exclusively on its assigned CPU.  User-level threads are
then multiplexed on top of these processes.  Disk I/O is
done to raw disk partitions, not through the file system.  I/
O is done only in the kernel.

Characteristic Base System

Processor speed 200 MHz

Number of processors 4

L1 caches 8 KB instr., 8 KB data

L2 cache 1 MB (unified)

System chipset 82450 KX/GX (Orion)

System bus speed 66 MHz

Memory size 4 GB

Memory organization 4-way interleaved

Memory speed 14-1-1-1 (bus cycles)

lmbench read bandwidth 213 MB/s

lmbench read latency 190 ns

TABLE 1. Summary of base system 
configuration.
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We measured a variant of the Transaction Processing
Council’s TPC-C benchmark [7]. TPC-C is an online trans-
action processing (OLTP) benchmark that simulates an
order-entry environment, and includes the activities of
entering and delivering orders, recording payments, check-
ing the status of orders, and monitoring the level of stock at
the warehouses. 

TPC-C is currently the only active OLTP benchmark
supported by the TPC. It uses a mix of five transactions,
rather than a single debit-credit transaction, like the now-
defunct TPC-A and TPC-B benchmarks. TPC-C employs a
more complex database structure and utilizes nonuniform
data access patterns to simulate data hot spots, resulting in
higher levels of contention for data access and update.

We used a modified version of TPC-C, where two client
machines simulate thousands of remote terminal emulators
(RTEs), generating requests with no think time between
requests. The resulting load presented to the database
server strongly resembles the full configuration with RTEs,
and thus stresses the server in similar ways [27].

The performance metric for TPC-C is the number of
NewOrder transactions per minute (tpmC). Since we have
modified the TPC-C benchmark, and since our benchmarks
have not been audited, as per TPC-C rules, we cannot
directly report tpmC ratings. Instead, we report throughput
relative to the base system described above. The TPC-C
specification places several constraints on the relationship
between transaction throughput and the database size. We
ensure that our configurations fall within the prescribed
range of 9 to 12.7 tpmC per warehouse, as required by the
TPC.  Configurations falling outside this range may exhibit
different behavior, such as different disk I/O rates and dif-
ferent user-OS breakdown, which may affect the code
paths and architectural behaviors measured [12] [14]. By
keeping our configurations within the prescribed range, we
keep the load offered to the system as consistent as possi-
ble across different configurations.

2.5  Methodology

We used the Pentium Pro hardware counters to measure
processor-centric events. In addition to the base system
described in Section 2.1, we measured numerous other sys-
tem configurations obtained by varying three architectural
parameters: L2 cache size, number of processors, and
memory bandwidth. The values for these parameters are
shown in Table 2. L2 cache size was modified by physi-
cally swapping processor/cache boards to switch between
the three cache sizes. The number of processors was varied
at boot time, so that the system was restricted to having
only one, two, or four processors active. When the number
of processors was halved, the buffer memory available to
the database was also halved. 

Memory bandwidth was varied by changing parameters
in the memory controller to modify the memory refresh
rate and page open mode. Our goal was to obtain the wid-
est range in memory bandwidth by modifying the fewest
parameters. We started with the base system, and toggled

the DRAM page-open mode from on to off. When page-
open mode is on, the DRAM page on chip is left “open,”
resulting in a lower latency access to the same page. When
this mode is off, the page is “closed” between subsequent
accesses, resulting in no performance optimization for
same-page accesses. The remaining configurations were
obtained by increasing the refresh frequency from once
every 15.625 µs to once per 3 µs, 1.5 µs, and 1 µs, respec-
tively. (We chose not to vary the DRAM RAS/CAS (row
and column access times), which would degrade the
latency of all requests and hence degrade bandwidth,
because it resulted in only a 20% degradation in average
memory latency.) 

To collect data on processor behavior, we used the Pen-
tium Pro hardware counters. Each processor has two
counters that can measure the number of a variety of
events, such as instructions and µops retired, branch
behavior, L1 and L2 cache misses, various bus transac-
tions, and several types of stalls, for either user-level activ-
ity or system-level activity [11]. We used a total of 82
event types for the data presented in this paper. For each
hardware configuration, we did five database runs. Each
run consisted of a 15-minute warm-up period, which was
sufficient to bring the database to steady state, and a 40-
minute measurement period. (40 minutes is chosen to max-
imize the measurement time before a checkpoint must be
taken.) The 40-minute measurement period is broken into
5-second fixed duration intervals, during which an event is
measured for both user and system level. The same event
pair is simultaneously measured across all four processors.
Typically, each database run results in six to eleven obser-
vations per event type. To obtain enough data points to
draw statistical conclusions, we perform at least five 40-
minute database runs for each hardware configuration.
Some runs measured all events, and others focused on a
subset of important events. We cycle through the counters

Parameter Values

L2 cache size 256 KB, 512 KB, 1 MB

Number of processors 1, 2, 4

lmbench read bandwidth 213, 175.5, 145, 113 (MB/s)

lmbench read latency 190, 266, 332, 470 (ns)

TABLE 2. Summary of architectural parameters
varied. The memory read bandwidth and the average memory
read latency are given by uniprocessor microbenchmarks that are
part of the lmbench suite [16]. Each of the memory latencies
shown corresponds to one of the memory bandwidths given (e.g.,
190 ns corresponds to 213 MB/s). Although lmbench calculates
latency as well as bandwidth, since we are actually increasing the
refresh bandwidth, it is better to think of our experiment as
reducing the bandwidth available to the processor, rather than
increasing memory latency. In Section 5.3 and Section 6.2 we
will use counter values to compute the average memory latency
observed by the database application.



in a different order for each run, to greater increase the
coverage of the counters.

For each event and processor, we computed a trimmed
mean; that is, we removed the minimum and maximum
observations, and then computed the mean from the
remaining observations [22]. After trimming, we have at
least 30 (in some cases 40) observations for each event
type. We then examined the data to determine the amount
of noise due to measurement error.   For the database, the
standard deviation for a given event for a given processor
was less than 5% of the mean for that event/processor com-
bination, for nearly all of the event types.

Unless otherwise noted, we will present the average val-
ues across all active processors in the system, since in most
cases the processors exhibit similar behavior. Any devia-
tions from this norm will be noted. 

3 Experimental results:  CPI 

We begin by presenting the CPI for the TPC-C-like
workload on the four-processor base system  summarized
in Table 3. We then examine components of the CPI, such
as memory system behavior, processor characteristics, and
multiprocessor scaling more closely in Section 4, Section 5
and Section 6.  In each section we pose and answer a set of
questions exploring the relevant issues. 

3.1  How does database CPI compare with the 
theoretical CPI possible on the Pentium Pro?

Using the Pentium Pro events that count the number of
cycles and the number of instructions retired during the
measurement period, we computed the CPI for the data-
base, the operating system, and the overall system.   The
database CPI is 2.52, while the OS CPI is over two times
that value, at 6.41. Our system spends between 76% and
80% of the time executing database code in user mode,
across the four processors.  The remaining time is spent in
system mode, with less than 1% idle time.  Considering
this ~78%/~22% breakdown, we can compute an overall
CPI for the system of 3.39. In contrast, the majority of the
SPEC 95 programs have a CPI between 0.5 and 1.5 on the
Pentium Pro [2].  

Table 3 presents the cycles per macro-instruction, CPI,
and the cycles per micro-instruction, CPµ, for the database
and the operating system. We can decompose the mono-
lithic CPI numbers by determining computation and stall
cycles. Computation CPI is calculated based on the µop
retire profile presented in Section 5.1: we assume µops
retired in single-retire cycles require one cycle in the
steady state, double-retire cycle µops take 0.5 cycles, and
triple-retire µops need 0.33 cycles. This determines the
number of cycles per µop, as shown in Table 3.  (Recall
that the theoretical minimum CPµ for this machine is
0.33.) To obtain the average CPI, we then multiply the CPµ
by the number of µops per macro-instruction. These values
are shown in Table 3. 

The Pentium Pro provides event types to monitor
resource stalls and instruction-related stalls. Resource
stalls account for cycles in which the decoder gets ahead of
execution, except for cache misses.  For example, resource
stalls encompass the conditions where register renaming
buffer entries, reorder buffer entries, memory buffer
entries, or execution units are full.  In addition, serializing
instructions (e.g., CPUID), interrupts, and privilege level
changes may spend considerable cycles in execution, forc-
ing the decoder to wait and incrementing the resource stalls
counter.  Instruction-related stalls count the number of
cycles instruction fetch is stalled for any reason, including
L1 instruction cache misses, ITLB misses, ITLB faults,
and other minor stalls [2] [11]. 

Putting these components together, we compute a CPI
value that very closely approximates the measured value.
For the database, our estimates are within 3% to 5% of the
measured value; our operating system estimates are typi-
cally within 10%. 

Comparing computation and stall CPI, we note that
stalls dominate the overall CPI. Stalls comprise 62% of the
database CPI and 73% of the operating system CPI.  The
bulk of these stalls are due to cache misses, which will be
described in more detail in Section 4.

These CPI and stall percentage numbers are roughly
consistent with those reported in the literature.  Cvetanovic
and Donaldson report a CPI of about 3.7 for Sybase run-
ning TPC-C on a four-processor in-order Alpha 21164-
based server [6].  They found that roughly 80% of the time
the processor was stalled.  Resource (e.g., “frozen”) stalls,

 

CPµ /CPI Component CPµ: DB CPµ: OS
CPµ: 
Overall CPI: DB CPI: OS

CPI: 
Overall

Computation:  µops 0.53 0.56 0.54 0.97 1.24 1.03

Resource stalls 0.25 1.15 0.45 0.45 2.56 0.91

Instruction-related stalls 0.62 1.00 0.70 1.13 2.24 1.37

Computed CPI/CPµ 1.39 2.71 1.68 2.55 6.04 3.32

Measured CPI/CPµ 1.37 2.87 1.70 2.52 6.41 3.38

TABLE 3. Breakdown of cycles per micro-operation (CPµ) and cycles per macro-
instruction (CPI) components for base system.



such as data cache misses and register and floating point
conflicts, comprised 49%, and “dry” stalls, where there is
no instruction to issue, comprised the remaining 31%. 

4 Memory system behavior

We begin our more in-depth analysis of the CPI compo-
nents by examining memory system behavior. Due to
space considerations, in the following sections we present
results for the database only, without detailed discussion of
operating system performance.  The characteristics of the
OS are similar to those of the database, so our conclusions
are not affected by this decision to focus on the database
results.  For the complete set of data, we refer the interested
reader to [13].

4.1  How do cache miss rates vary with L2 cache size?

We examined how cache miss ratios change as cache
size increases by physically changing the processor boards
to measure configurations with 256 KB, 512 KB and 1 MB
L2 caches. Table 4 presents counts of cache accesses and
misses per 1000 instructions retired, and the resulting
cache miss ratios. As expected, the high-order effect of
increasing cache size is an decrease in L2 cache misses,
and in the corresponding cache miss rates.

Overall L2 miss rates decrease by 45% as L2 cache size
increases from 256 KB to 512 KB, and by another 36% as
the size is further doubled to 1 MB.  We see that instruc-
tion-related L2 cache misses are nearly fully satisfied by
the 1 MB cache; instruction-related miss rates are only 1%.
Data miss ratios are still quite high, even for the 1 MB L2
cache, which suggests that even larger L2 caches could be
beneficial for the database workload. 

Several other recent studies indicate that both larger
(e.g., up to 8 MB L2)  and more associative (e.g., up to
four-way) caches, with longer cache lines (e.g., 64 to 128
bytes), are beneficial to OLTP workloads, including TPC-
C [1] [15] [24].  Our conversations with database experts
suggest that the instruction stream can be effectively
cached for all commercially available databases.  Data
accesses are more difficult to absorb, however, because the
data footprint is much (e.g., up to an order of magnitude
[15]) larger than the instruction footprint. 

A rule of thumb that has been suggested for predicting
the benefits of increasing L2 cache size is the following:
each doubling of the cache size gives about half the benefit
seen with the previous doubling [28].  (For example, if we
observe a 10% improvement from 512 KB to 1 MB, we
should see 5% from 1 MB to 2 MB.)   The data shown in
Table 4 roughly support this assertion.  For the database,
the number of L2 misses per 1000 instructions decreases
by 45% (e.g., from 20 to 11) as the L2 cache is increased
from 256 KB to 512 KB, and by 20% relative to the origi-
nal (e.g., from 11 to 7), as the cache size is increased from
512 KB to 1 MB.  Our data support this rule of thumb;
more data must be collected to further evaluate its validity.

4.2  What effects do larger caches have on transaction 
throughput and stall cycles?

Table 5 shows the database throughput and CPI break-
down for the three cache sizes. Halving the second-level
cache size results in nearly a 10% degradation in transac-
tion throughput, while quartering the cache size results in
roughly a 20% degradation in transaction throughput.
Overall CPI increases by 15% when the cache is halved,
and by 35% when the size is quartered, with most of the
change allocated to instruction-related stalls. The database
experiences a degradation in instruction-related stalls and
resource stalls with the smaller cache size. 

4.3  Are non-blocking L2 caches successful at hiding 
memory latency?

To study the effectiveness of non-blocking second-level
caches, we take advantage of a BIOS parameter that allows
us to limit the number of outstanding system bus transac-
tions [11].  We compare a uniprocessor under the normal
bus operation (up to 4 transactions outstanding) with a uni-
processor limited to a single outstanding bus transaction.

We performed this experiment for both 1 MB and 256
KB caches, and in both cases found negligible difference

Characteristic 256 KB 512 KB 1 MB

Instruction fetches 1557 1496 1388

Data references 426 452 492

L1 I-cache misses 88 (7%) 89 (6%) 89 (7%)

L1 D-cache misses 46 (6%) 48 (7%) 48 (7%)

ITLB misses 3 4 4

L2 Inst.-related misses 9 (10%) 3 (4%) 1 (1%)

L2 Data-related misses 11 (24%) 8 (18%) 6 (12%)

Overall L2 misses 20 (24%) 11 (9%) 7 (5%)

TABLE 4. Cache access and miss behavior as a
function of L2 cache size. The values in this table
represent the number of events occurring per 1000 instructions
retired.  Miss ratios for each cache are shown as a percentage
in parentheses.  DTLB misses are not included in this table,
because they could not be measured reliably. The Pentium Pro
has an 8 KB on-chip L1 instruction cache and an 8 KB on-chip
L1 data cache. The data cache is 2-way associative, while the
instruction cache is 4-way associative. Hits have a 3-cycle
latency, and misses that hit in the L2 cache have an additional
4-cycle latency. Both are nonblocking, and support both hit-
under-miss and miss-under-miss; at most four cache misses
outstanding to the L2 are permitted. The L2 cache is a unified,
4-way associative, cache located off of the processor chip, in
the same multi-chip module. In this base architecture, the L2
size is 1 MB. The L2 is also nonblocking: at most four bus
transactions to memory/I/O are permitted. All caches employ a
writeback policy, using a writeback buffer to reduce the miss
penalty when a miss requires replacing a dirty block.



between the configuration where the processor was
allowed 4 outstanding transactions, vs. the configuration
where the processor was limited to a single outstanding
transaction. Table 6 presents results for several key param-
eters for the 256 KB experiment. 

The latencies to memory on an L2 cache miss are too
long for the out-of-order engine to cover them com-
pletely.  It should be possible, though, for two or more L2
misses to overlap with each other, thus reducing memory-
related stall time.  This does not appear to be the case,
however:  improvements in stalls are negligible.  This
behavior leads us to believe that multiple outstanding
transactions aren’t used often enough to greatly improve
the stall component of CPI.

Although we offer no quantitative evidence to support
the claim, we speculate that non-blocking first-level caches
will permit processors to hide the shorter latencies of L2
misses.  Rosenblum, et al., demonstrate that dynamically
scheduled processors can hide approximately half of the
latency of L1 misses for TPC-B [24].  They also reported
that they didn’t observe multiple outstanding L2 misses
frequently enough to significantly reduce stall time.

5 Processor issues

In addition to memory hierarchy-related stall CPI com-
ponents, a non-negligible component of CPI (both compu-
tation and stall cycles) is due to processor features.  In this
section we examine some of these processor features.

5.1  How useful is superscalar issue and retire?

In the Pentium Pro, three parallel decoders translate x86
macro-instructions into triadic  µops.  Each cycle, up to
three µops can be retired in the out-of-order engine, and up
to three x86 instructions can be retired in the in-order
engine.  Table 7 presents the macro-instruction decode
behavior for the database for the base system. Table 8 pre-
sents the macro-instruction retirement profile, and Table 9
presents the micro-operation retirement profile. In each
table the “% cycles” column refers to the percent of total
cycles where that operation occurs.  “% inst.” refers to the
percent of instructions that are decoded/retired in that type
of cycle.

In all three cases, the database experiences a high per-
centage (e.g., 60 - 75%) of cycles where zero instructions
(or  µops) are decoded or retired.  In contrast, the SPEC
integer programs with high L2 cache miss rates show many
fewer cycles (i.e., 35% to 51%) with no instructions
decoded [2]. Similar behavior is exhibited for SPEC pro-
gram retirement profiles.

Since there is only a modest benefit from the triple-
instruction-decode and -retire cycles, this workload may
not need a machine with such wide superscalar macroin-
struction decode and retire capabilities. The database is
better able to exploit the three-way retire in the out-of-
order execution engine.

Finally, we see that roughly 1.8 µops are retired for
every macro-instruction for the database.  In contrast, the

Characteristic 256 KB 512 KB 1 MB

Relative transaction 
throughput

78.2% 90.7% 100%

Measured CPI 3.41 2.89 2.52

Computation:  µops 0.96 0.96 0.97

Resource stalls 0.66 0.56 0.45

Instruction-related stalls 1.83 1.36 1.13

TABLE 5. Relative database throughput and
CPI breakdown as function of L2 cache size. 

Characteristic
1 bus 
req.

<= 4 
bus req.

Measured CPI 2.79 2.74

Computation CPI 2.81 2.77

Resource Stall CPI 0.40 0.38

Instruction Stall CPI 1.43 1.40

Average memory latency 60 cyc. 58 cyc.

TABLE 6. Effects of non-blocking for 256
KB L2 cache.

Characteristic % cycles % inst.

0-instruction decode 65.5% n/a

1-instruction decode 19.4% 34.7%

2-instruction decode  8.9% 31.7%

3-instruction decode  6.3% 33.6%

TABLE 7. Instruction decode profile. In the
Pentium Pro, three parallel decoders translate IA-32 macro-
instructions (e.g., instructions) into triadic micro-operations
(e.g., µops). Most instructions are converted to a single µop,
some are converted into two to four µops, and complex
instructions require microcode, which is a longer sequence
of µops. Up to five µops can be issued each clock cycle.

Characteristic % cycles % inst.

0-instruction retire 72.7% n/a

1-instruction retire 17.0% 41.9%

2-instruction retire 7.2% 35.3%

3-instruction retire 3.1% 22.8%

TABLE 8. Macro-instruction retirement
profile.  In the Pentium Pro, up to three x86
instructions can be retired in a single cycle.



average number of  µops per macro-instruction is around
1.35 for the SPEC programs [2]. This implies that the data-
base utilizes more complex x86 instructions than the SPEC
programs do.

5.2  How effective is branch prediction?

Branch behavior for the database and operating system
is shown in Table 10. Branches comprise about 21% of
database instructions. The branch misprediction ratio for
the database is 14%, which is quite high relative to the
branch misprediction ratios of less than 10% for the SPEC-
Int applications.   Cvetanovic and Donaldson report that
the frequency of branches and mispredictions for TPC-C
on the Alpha 21164  is comparable to SPECInt [6].

Branch Target Buffer (BTB) miss ratios are also quite
high: roughly 55% for both the database and the operating
system. This ratio is in contrast to the SPEC workloads,
where all programs except one integer program exhibit a
BTB miss ratio of less than about 30%. Most SPEC BTB
miss ratios are well below 15% [2]. 

One reason for this branch and BTB behavior is that the
compilation process used for the database application
employed only traditional compiler optimization tech-
niques, but did not employ more advanced optimization
techniques, such as profile-based optimization.  This tech-
nique, which can move infrequently executed basic
blocks out of line and lay out more frequently interacting
basic blocks contiguously, could improve branch mispre-
diction and BTB miss behavior, as well as L1 instruction
cache miss behavior [23].  However, there is a limit to the
savings this technique can offer.  Furthermore, processors
must be able to efficiently execute code, even if it has not
been aggressively optimized.  At the least, these miss ratios
suggest that the database and OS require a much larger
BTB, and perhaps a different branch prediction method.
Hilgendorf and Heim report that BTB miss rates improve
for BTBs up to ~16k entries for OLTP workloads [9]. 

Finally, we note that the speculative execution factor, or
the number of macro-instructions decoded divided by the
macro-instructions retired, is 1.4 for the database. The
speculative execution factor for nearly all SPEC programs
is between 1 and 1.3 [2].

5.3  Is out-of-order execution successful at hiding stalls?

The Pentium Pro implements dynamic execution using
an out-of-order, speculative execution engine, which
employs register renaming and non-blocking caches. How
effective is dynamic execution for database workloads? 

In Figure 2 and Figure 3, we decompose the stall com-
ponents of CPI further to include L1 I and D cache misses,
ITLB misses, L2 cache misses, branch misprediction stalls,
and other minor stalls. Each graph depicts the CPI for one
L2 cache size, for a variety of memory configurations, as
described in Table 2.  Due to space constraints, we present
results for only 256 KB and 1 MB L2 caches.  If out-of-
order execution is doing its job properly, some of these
components should be overlapped with each other during
execution. In the figure we also retain the resource stalls
and computation components from Table 3. The black line
in each column marks the measured CPI for that configura-
tion. 

For all cache sizes and memory system configurations,
we see that the measured CPI is less than the non-over-
lapped total.  Measured database CPI is 60% of its total bar
height for the 256 KB L2 cache and 67% for the 1 MB
cache.  Thus, out-of-order execution is somewhat effec-
tively overlapping the CPI components to achieve a lower
actual CPI.  In  contrast, the CPI of SPEC programs is
about 20% to 50% lower than the individual components
due to overlapped execution [2]. Since fewer of these com-
ponents are being overlapped for the database workload,
we conclude that out-of-order and speculative execution
provide less value for database workloads than for SPEC
workloads.

Out-of-order execution is somewhat more effective for
the 256 KB cache size, as evidenced by measured CPI
being a smaller percentage of the total non-overlapped CPI
than in the 1 MB case.  As memory latencies rise, nearly
doubling, this percentage remains relatively constant.  This

Characteristic % cycles % inst.

µops per macro-instruction  1.84

0-µop retire 62.8% n/a

1-µop retire 16.7% 23.7%

2-µop retire  7.9% 22.5%

3-µop retire 12.6% 53.7%

TABLE 9. Micro-operation retirement
profile.  In the Pentium Pro, up to three µops can be
retired in a single cycle.

Characteristic

Branch frequency 20.9%

Branch misprediction ratio 14.3%

BTB miss ratio 55.6%

Speculative execution factor 1.40

TABLE 10. Branch behavior. The Pentium Pro
processor implements a branch prediction scheme
derived from the two-level adaptive scheme described by
Yeh and Patt [29]. The branch target buffer (BTB), which
contains 512 entries, maintains branch history
information and the predicted branch target address. A
static prediction scheme (backwards taken, forward not
taken) is employed. Mispredicted branches incur a
penalty of at least 11 cycles, with the average
misprediction penalty being 15 cycles [8].



is somewhat disappointing, since it indicates that the out-
of-order engine is unable to hide memory latency. 

Other researchers have demonstrated some execution
time improvements from out-of-order and increasing issue
width for TPC-B [1] [24].  [24] reports only a modest 25%
speedup from out-of-order, due predominantly to the high
percentage of I/O-induced idle time due to their undercon-
figured simulated disk system.

6 Multiprocessor scaling issues

In this section, we explore the scalability of the Pentium
Pro architecture for running database workloads as the
number of processors is varied from one to two to four.
Specifically, we examine the system bus utilization, the

increase in bus invalidation traffic, and the MESI profile
for L2 caches as the number of processors grows. 

6.1  How well does database performance scale as the 
number of processors increases?

Table 11 shows a summary of the relative transaction
throughput and system and database configuration parame-
ters. As seen in the table, transaction throughput scales rea-
sonably well  as we move from one to four processors.

6.2   How does bus performance scale with increasing 
cache sizes and increasing processor count?

Table 12 presents the system bus utilization across all of
the processors in the system for different cache sizes. By
bus utilization, we mean the time the bus is busy transfer-
ring data (or control information), or the time it is not busy
but unavailable.  (This latter case may happen when some
bus agent, for example the memory controller, falls behind
in its internal processing.)  Since this phenomenon has
been observed experimentally, but cannot be fully
accounted for by the existing counters, we apply a 2X mul-
tiplier to the values measured by the counters to properly
estimate bus utilization [28].  

Interestingly, even though transaction performance
scales well, we find that system bus utilization grows more
slowly as the number of processors increases from two to
four.  However, even at these low utilizations, bus activity
has an impact on the memory latency perceived by the
database and operating system.  For instance, database
memory reads appears to take  roughly 60 cycles for the
uniprocessor case, but roughly 100 cycles for the four-pro-
cessor case, as shown in Table 13. 

Thus, it is not clear to what degree this bus will scale to
support additional processors. 

FIGURE 2. Non-overlapped CPI for the 4-
processor, 256 KB configuration.  Latency from
each of the components above is shown as a portion of the bar
graph.  Application memory latency for each configuration is
computed from counter values that measure the number of
cycles where data read transactions are outstanding on the bus,
and the number of data read transactions.  These values are
used as L2 cache miss penalties.  L1 and L2 hit times are as
described in the caption for Table 4, and branch misprediction
penalties are as described in the caption for Table 10.
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FIGURE 3. Non-overlapped CPI for the 4-
processor, 1 MB configuration.  Latency from each
of the components above is shown as a portion of the bar
graph.
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TABLE 11. Summary of database configurations
and throughputs. For these comparisons, we hold the L2
cache size constant at 1 MB, and hold the memory bandwidth
constant at 213 MB/s. As stated in Section 2.4, the ratio of TPC-
C throughput to warehouses (i.e., database size) must fall within
the range from 9 to 12.7. To maintain the correct ratio values, we
changed the size of the database for the two-processor and
uniprocessor cases. In addition, we modified the number of
database buffers, as shown above. All values are shown relative
to the four-processor base case configuration.

Configuration Parameter 1 P 2 P 4 P

Relative Txn. Throughput 29% 56% 100%

Warehouses (W) 29% 58% 100%

Database Buffer Pool Size 25% 50% 100%



6.3  How prevalent are cache misses to dirty data in 
other processors’ cache?  

Increasing the L2 cache size also has the potential to
increase the number of coherence cache misses.  Particu-
larly problematic are cache misses to dirty data in other
processors’ caches [1] [17].  This difficulty arises in some
architectures because the dirty data must be implicitly writ-
ten back to memory before being read into the requesting
processor’s cache.  The Pentium Pro optimizes this dirty
miss case by allowing the processor that owns the dirty line
to directly transfer the line to the requesting processor,
while memory snoops the bus to update its copy.  Although
this case may be less of an issue for the Pentium Pro archi-
tecture, it is still useful to quantify the frequency of this
operation, and determine how it is affected by L2 cache
size.  

Table 14 presents the percentage of L2 cache misses to
dirty data in other processors’ caches for one-, two-, and
four-processor servers and a range of L2 cache sizes.  It
appears that doubling the size of the cache doubles the per-
centage of L2 misses to dirty data.  Likewise, doubling the
number of processors roughly doubles the percentage of L2
misses to dirty data.  As the cache size increases to up to 8
MB, the percentage could be quite large.  Indeed, Barroso
and Gharachorloo report that roughly 60% of misses
require a cache-to-cache transfer for dirty data for an 8 MB
cache [1].

6.4  Is the four-state (MESI) invalidation-based cache 
coherence protocol worthwhile for OLTP?

Cache lines may be in one of four states in this protocol:
modified (M), exclusive (E), shared (S), or invalid (I).
Some coherence protocols don’t distinguish between

exclusive (exclusive clean) and modified (exclusive dirty).
We want to investigate whether all four states are used by
this workload, and use this analysis to confirm the effec-
tiveness of the cache write policy. 

The Pentium Pro counters allow us to monitor the MESI
state of an L2 cache line on an access to the L2 cache (e.g.,
instruction fetch, load or store.) Accesses to “invalid” lines
correspond to cache misses, while accesses to lines in other
states correspond to hits to an L2 line found in that state,
before any modifications due to that access are made.
Table 15 shows the percentages of L2 cache instruction
fetches, loads and stores, broken down by MESI state. 

As expected, we see that nearly all of the instruction
fetches that hit in the L2 cache are to shared cache lines.
The exclusive state is heavily utilized for loads in the uni-

TABLE 12. Overall bus utilization as a function of
L2 cache size and number of processors.

L2 Cache Size 1 P 2 P 4 P

256 KB 23.4% 42.7% 73.9%

512 KB 18.0% 33.8% 55.1%

1 MB 15.3% 24.6% 38.7%

TABLE 13. Application memory latency as a
function of L2 cache size and number of
processors. All values are in processor cycles.

L2 Cache Size 1 P 2 P 4 P

256 KB 58 71 115

512 KB 58 72 110

1 MB 58 74 95

TABLE 14. Percentage of L2 cache misses to
dirty data in another processor’s cache as a
function of L2 cache size and number of
processors.  The absolute number of dirty misses across all
active processors for the five-second measurement window is
given in millions by the number in parentheses. We hypothesize
that the count for the uniprocessor case is non-zero because the
signal used to indicate a hit to dirty data is also raised, in
conjunction with another signal, to indicate that the processor
wishes to stall during the snoop bus cycle.

L2 Cache 
Size 1 P 2 P 4 P

256 KB 1.1% (0.01) 3.1% (0.36) 5.3% (0.35)

512 KB 0.4% (0.02) 5.7% (0.48) 11.1% (1.45)

1 MB 0.6% (0.02) 10.0% (0.60) 21.5% (1.84)

Configuration and 
L2 Access Type M E S

(Miss)
I 

INST. FETCH

1 processor 0.0% 0.8% 98.0% 1.2%

2 processors 0.0% 0.0% 98.9% 1.1%

4 processors 0.0% 0.0% 98.9% 1.1%

LOAD

1 processor 23.7% 56.8% 1.2% 18.3%

2 processors 21.2% 17.7% 45.2% 16.0%

4 processors 25.7% 15.6% 46.4% 12.2%

STORE

1 processor 76.3% 1.6% 0.0% 22.1%

2 processors 79.9% 1.1% 1.9% 17.0%

4 processors 85.8% 0.6% 2.9% 10.5%

TABLE 15. State of L2 line on L2 hit. Table shows
percentage of L2 accesses.



processor case for the database, as might be expected. In
the dual- and quad-processor servers, hits resulting from
loads are distributed across the different states, going pre-
dominantly to shared lines, followed by modified lines and
finally exclusive lines. The high percentage of load hits to
modified lines indicates that the processor reads data in the
same line as it has recently written. In addition, over 95%
of the database store hits are to modified lines, with few
write accesses to shared or exclusive lines. These measure-
ments provide quantitative evidence of the temporal local-
ity present in the workload, and validate the usefulness of
the writeback write policy employed by the Pentium Pro
caches. 

A primary advantage of the exclusive state is that it
allows the processor to avoid the invalidation bus transac-
tion on a store to a shared line: if the line is already in the
exclusive state, it is the only copy currently cached. How-
ever, we see that store hits to exclusive lines rarely occur.
Thus, it isn’t clear whether the benefits of the E state are
worth the cost of implementing the fourth state for this
workload. A three-state protocol would be sufficient, and
not result in significantly increased bus traffic. 

7 Future work

We see many interesting avenues of future research
worth pursuing. First, we plan to characterize decision sup-
port database workloads, such as the TPC-D benchmark,
using a methodology similar to the one used in this paper.
Another fertile research area is to study the transaction
throughput and I/O rates as a function of database buffer
size (i.e., memory capacity), including an examination of
support for very large memory configurations. Some initial
work has been done in this area [27] [6], and more investi-
gation is warranted. Finally, we plan to investigate the
importance of system configuration in determining
observed performance. Many researchers scale back prob-
lem sizes or underconfigure the hardware in their systems
when measuring database workloads, violating the TPC
guidelines. We want to understand how these concessions
impact the measured behavior [14].

8 Conclusions

Commercial applications have very different character-
istics from technical applications, which are commonly
used as benchmarks in the design of computer architec-
tures. For better or for worse, benchmarks help to shape a
field. We need to give this important class of applications a
chance to help shape the field of computer architecture. 

We used the Pentium Pro’s built-in hardware counters
to monitor numerous architectural features of a four-pro-
cessor SMP running a properly configured commercial
database executing a TPC-C-like transaction processing
workload. In addition, we varied several hardware and
firmware parameters, including the number of processors,
L2 cache sizes, memory system bandwidth, and number of

outstanding bus transactions.  We investigated the effec-
tiveness of out-of-order and speculative execution, super-
scalar design, branch prediction, multiprocessor scaling
and several cache parameters. 

We found that out-of-order execution is only somewhat
effective for this database workload. The overall CPI was
3.39, which can be decomposed into a 2.52-cycle database
component, which applies for 80% of the execution time,
and a 6.48-cycle operating system component, which
applies for the remaining 20% of execution time. Stall
cycles comprise 62% of the database CPI and 73% of the
OS CPI. To improve this situation, computer architects
could provide more detailed performance counters that
allow performance analysts to decompose resource stalls
and instruction-related stalls further. 

The database sees only modest benefit from superscalar
issue and retire. Zero instructions are decoded and retired
in more than 65% of the database cycles.  Furthermore,
zero µops are retired in 63% of the cycles for the database.
Architects could potentially reduce the macroinstruction
decode and retire width without adverse impact on this
workload.

The Pentium Pro’s branch prediction scheme is not
nearly as effective for the TPC-C workload as it is for
SPEC workloads. Furthermore, the branch target buffer’s
512 entries are insufficient for this workload. While some
performance benefit may come from compilation and
binary editing tools, there is room for innovation in branch
prediction algorithms and hardware structures to better
support database workloads.

We found that caches are effective at reducing the pro-
cessor traffic to memory: Only 0.33% of database access
and 0.47% of OS accesses reach memory. Our data support
the rule of thumb that doubling the cache size gives about
half the benefit seen with the previous doubling.  We found
that the nonblocking nature of the L2 cache did not aid in
hiding memory latency.  We speculate that the workload
does not have multiple outstanding cache misses frequently
enough to take advantage of this feature.

Examining the four-state MESI cache coherence policy,
we saw that the exclusive state is not often utilized for store
operations. Hence, architects could employ a three-state
(MSI) cache coherence protocol without significant
increase in bus traffic due to writebacks of potentially dirty
data. 

As expected, the amount of time when the bus is
unavailable decreases with larger caches, and increases as
more processors are added.  However, even low to medium
bus utilization can increase application memory latency,
which affects the scalability of transaction throughput.
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