
1

Buffer Management II
LRU-K

15-823

Advanced Topics in Database Systems Performance

2© 2001 Anastassia Ailamaki

Outline

� Motivation

� Limitations of previous approaches

� Basic concepts
� Addressing realistic problems

� Algorithm

3© 2001 Anastassia Ailamaki

Motivation

GUESS when the page will be referenced again

Problem with LRU:
� Makes decision based on too little info
� Cannot tell between frequent/infrequent refs on time

� System spends resources to keep useless stuff around



2

4© 2001 Anastassia Ailamaki

Example Scenario 1

� Relation CUSTOMER with 20,000 tuples

� Clustered B-tree on CUST_ID, 20b/key

� 4K pages, 4000 bytes useful space
� 100 leaf pages

� Many users

� References L1, R1, L2, R2, L3, R3, …

� Probability to ref Li is .005, to ref Ri is .00005

� LRU?

5© 2001 Anastassia Ailamaki

Example Scenario 2

� Relation R with 1,000,000 tuples

� A bunch of processes ref 5000 (0.5%) tuples

� A few batch processes do sequential scans

� LRU?

6© 2001 Anastassia Ailamaki

Related Work

� Page pool tuning (I.e., domain separation)
� Needs constant recalibration

� Cannot handle locality (hot spot patterns)changes
� Hard to program

� Query execution plan analysis (hot set, DBMIN,
hint-passing approaches)
� Info from the query optimizer
� Works well when same plan rereferences

� DBMIN is best of the above
� But multiuser breaks it (optimizer can’t detect overlaps)



3

7© 2001 Anastassia Ailamaki

Basic concepts

Idea: Take into account history: last K references

(Classic LRU: K=1 (LRU-1))

Parameters:

� Pages N={1,2,…,n}

� Reference string r1, r2, …, rt, …

� rt=p for page p at time t
� bp = probability that rt+1=p

� Time between references of p: Ip = 1/bp

8© 2001 Anastassia Ailamaki

Algorithm

� Backward K-distance bt(p,K):
#refs from t back to the Kth most recent reference to p

� bt(p,K) = ∞∞∞∞ if Kth ref doesn’t exist

� Algorithm:
Drop page p w/ max Backward K-distance bt(p,K)

� Ambiguous when infinite (use subsidiary policy, e.g., LRU)

� LRU-2 Is better that LRU-1 – Why? (Ip)

9© 2001 Anastassia Ailamaki

Realistic problems

� Early page replacement
� Page bt(p,K) is infinite, so drop

� But what if it is a rare but “bursty” case?

� Page reference retained information
� For K>1- page may be gone / its information still around



4

10© 2001 Anastassia Ailamaki

Correlated References

1. Intra-transaction
� E.g., read tuple/update tuple)

2. Transaction/Retry
� Rolled back and restarted

3. Intra-process
� A process references page via 2 transactions
� E.g., update RIDs 1-10, commit, update RIDs 11-20

4. Inter-process
� Two processes reference the same page independently

11© 2001 Anastassia Ailamaki

Addressing Correlation

� Problem: For example, assume (1) – read/update
� Algorithm sees p ( read)
� Drops it (infinite bt(p,K)) (wrong)

� Sees it again (update)
� Keeps it around (wrong again)

� Should take into account only non-correlated refs

� But how do we know?

12© 2001 Anastassia Ailamaki

Addressing Correlation (cont.)

� Solution: “Correlated Reference Period” by process
� No penalty or credit for refs within CRP
� Ip: interval from end of one CRP to begin of the next

� How do we address (2) or (3)?



5

13© 2001 Anastassia Ailamaki

Addressing Correlation (cont.)

� (1,3): CRP ends after end of this and the next Xtion
� (2): or when sure that the first Xtion has committed

� Messy – there may be more correlation cases

� Have DBA set CRP per each table

14© 2001 Anastassia Ailamaki

Reference Retained Information

� Algorithm needs to keep info for pages that may not
be resident anymore, e.g.,

p is referenced and comes in for the first time
bt(p.2) = infinity, p is dropped
p is referenced again
if no info on p is retained, p may be dropped again

� Page history information HIST(p) with <=2 refs to p
� Why not keep refs in page header?

� “Retained Information Period”
� Period after which we drop information about page p
� “Five minute rule” suggests RIP

15© 2001 Anastassia Ailamaki

LRU-K Algorithm

If p is in the buffer { // update history of p

if LAST(p) > CRP { // uncorrelated reference

correl_period_of_p=LAST(p)-HIST(p,1)
for i=2 to K

HIST(p,i)=HIST(p,i-1)+ correl_period_of_p

HIST(p,1)=t

}
LAST(p)=t

}



6

16© 2001 Anastassia Ailamaki

LRU-K Algorithm (cont.)

else { // select replacement victim

min=t

for all pages q in buffer {
if (t-LAST(q)>CRP // eligible for replacement

and HIST(q,K)<min) { // max Backward-K

victim=q

min=HIST(q,K)
}

if victim dirty write back before dropping

17© 2001 Anastassia Ailamaki

LRU-K Algorithm (cont.)

fetch p into the victim’s buffer
if no HIST(p) exists {

allocate HIST(p)
for i=2 to K HIST(p,i)=0

} else {
for i=2 to K HIST(p,i)= HIST(p,i-1)

}
HIST(p,1)=t // last non-correlated reference
LAST(p)=t // last reference

}

18© 2001 Anastassia Ailamaki

Two-pool Experiment

� Two disk page pools, N1=100 / N2=10,000 pages

� Models alternating index/record references

� Results
� LRU-1 needs 2-3 times bigger BP to reach LRU-2 hit rate
� LRU-2 really close to LRU-3 and optimal



7

19© 2001 Anastassia Ailamaki

Single-pool / Random Access

� One disk page pool, N=1000 pages

� Zipf(a,b) distribution of reference frequences
(fraction a of references accesses fraction b of pages)

� Results
� LRU-2 still wins, although not by as much

20© 2001 Anastassia Ailamaki

Real OLTP Workload

� Traces from bank OLTP Xtion references

� 470,000 page references, 20GB database

� Compared to LFU as well

� Results
� LRU-2 beats LRU-1

� LRU-2 also beats LFU (why?)

21© 2001 Anastassia Ailamaki

Conclusions

� LRU not good enough

� LFU has limitations

� Other algorithms
� too complex
� can’t cope with change/multiple users

� LRU-K works well

� Really, LRU-2 is most beneficial

� Usability today?


