15-823
Advanced Topics in Database Systems Performance

Buffer Management I
LRU-K

Outline

o Motivation

o Limitations of previous approaches
o Basic concepts

o Addressing realistic problems

o Algorithm

© 2001 Anastassia Allamaki

Motivation

GUESS when the page will be referenced again

Problem with LRU:
o Makes decision based on too little info
o Cannot tell between frequent/infrequent refs on time
o System spends resources to keep useless stuff around

© 2001 Anastassia Allamaki

Example Scenario 1

Relation CUSTOMER with 20,000 tuples
Clustered B-tree on CUST_ID, 20b/key

4K pages, 4000 bytes useful space

100 leaf pages

Many users

References L1, R1, L2, R2, L3, R3, ...
Probability to ref Li is .005, to ref Ri is .00005

[Y o

o LRU?

© 2001 Anastassia Allamaki

Example Scenario 2
o Relation R with 1,000,000 tuples
o A bunch of processes ref 5000 (0.5%) tuples

o A few batch processes do sequential scans

o LRU?

© 2001 Anastassia Allamaki

Related Work

o Page pool tuning (l.e., domain separation)
o Needs constant recalibration
o Cannot handle locality (hot spot patterns)changes
o Hard to program
o Query execution plan analysis (hot set, DBMIN,
hint-passing approaches)
o Info from the query optimizer
o Works well when same plan rereferences
o DBMIN is best of the above
o But multiuser breaks it (optimizer can’t detect overlaps)

© 2001 Anastassia Allamaki

Basic concepts

Idea: Take into account history: last K references
(Classic LRU: K=1 (LRU-1))

Parameters:

o Pages N={1,2,...,n}

o Reference string ry, ry, ..., I, ...

o r=p for page p at time t

o b, = probability that r+1=p

o Time between references of p: I, = 1/b,

© 2001 Anastassia Allamaki

Algorithm

o Backward K-distance b,(p,K):
#refs from t back to the Kth most recent reference to p

o b(p.K) = e if Kth ref doesn't exist
o Algorithm:
Drop page p w/ max Backward K-distance b,(p,K)

o Ambiguous when infinite (use subsidiary policy, e.g., LRU)

o LRU-2 Is better that LRU-1 —Why? (I)

© 2001 Anastassia Allamaki

Realistic problems

o Early page replacement
o Page b(p,K) is infinite, so drop
o Butwhat if it is a rare but “bursty” case?

o Page reference retained information
o For K>1- page may be gone / its information still around

© 2001 Anastassia Allamaki

Correlated References

1. Intra-transaction
o E.g., read tuple/update tuple)
2. Transaction/Retry
o Rolled back and restarted
3. Intra—process
o Aprocess references page via 2 transactions
o E.g., update RIDs 1-10, commit, update RIDs 11-20
4. Inter-process
o Two processes reference the same page independently

© 2001 Anastassia Ailamaki 10

Addressing Correlation

o Problem: For example, assume (1) — read/update
o Algorithm sees p (read)
o Drops it (infinite by(p,K)) (wrong)
o Sees it again (update)
o Keeps it around (wrong again)

o Should take into account only non-correlated refs
o But how do we know?

© 2001 Anastassia Ailamaki 11

Addressing Correlation (cont.)

o Solution: “Correlated Reference Period” by process
o No penalty or credit for refs within CRP
a l,: interval from end of one CRP to begin of the next

o How do we address (2) or (3)?

© 2001 Anastassia Ailamaki 12

Addressing Correlation (cont.)

o (1,3): CRP ends after end of this and the next Xtion
o (2): or when sure that the first Xtion has committed

o Messy — there may be more correlation cases

o Have DBA set CRP per each table

© 2001 Anastassia Ailamaki 13

Reference Retained Information

o Algorithm needs to keep info for pages that may not
be resident anymore, e.g.,
p is referenced and comes in for the first time
b(p.2) = infinity, p is dropped
p is referenced again
if no info on p is retained, p may be dropped again
o Page history information HIST(p) with <=2 refs to p
o Why not keep refs in page header?
o “Retained Information Period”
o Period after which we drop information about page p
o “Five minute rule” suggests RIP

© 2001 Anastassia Ailamaki 14

LRU-K Algorithm

If p is in the buffer { // update history of p
if LAST(p) > CRP {// uncorrelated reference
correl_period_of_p=LAST(p)-HIST(p,1)

fori=2 to K
HIST(p,))=HIST(p,i-1)+ correl_period_of_p
HIST(p,1)=t
}
LAST(p)=t

}

© 2001 Anastassia Allamaki 15

LRU-K Algorithm (cont.)

else { // select replacement victim
min=t
for all pages q in buffer {
if (--LAST(q)>CRP // eligible for replacement
and HIST(q,K)<min) { // max Backward-K
victim=q
min=HIST(q,K)
}

if victim dirty write back before dropping

© 2001 Anastassia Ailamaki 16

LRU-K Algorithm (cont.)

fetch p into the victim’s buffer
if no HIST(p) exists {
allocate HIST(p)
for i=2 to K HIST(p,i)=0
}else{
for i=2 to K HIST(p,i)= HIST(p,i-1)
}
HIST(p,1)=t // last non-correlated reference
LAST(p)=t // last reference

}

© 2001 Anastassia Ailamaki 17

Two-pool Experiment

o Two disk page pools, N1=100 / N2=10,000 pages
o Models alternating index/record references

o Results
o LRU-1 needs 2-3 times bigger BP to reach LRU-2 hit rate
o LRU-2 really close to LRU-3 and optimal

© 2001 Anastassia Ailamaki 18

Single-pool / Random Access

o One disk page pool, N=1000 pages
o Zipf(a,b) distribution of reference frequences
(fraction a of references accesses fraction b of pages)

o Results
o LRU-2 still wins, although not by as much

© 2001 Anastassia Allamaki

19

Real OLTP Workload

o Traces from bank OLTP Xtion references
o 470,000 page references, 20GB database
o Compared to LFU as well

o Results
o LRU-2 beats LRU-1
o LRU-2 also beats LFU (why?)

© 2001 Anastassia Allamaki

20

Conclusions

[m]

LRU not good enough
LFU has limitations

Other algorithms
o too complex
o can't cope with change/multiple users

LRU-K works well
Really, LRU-2 is most beneficial

[m]

[m]

[m]

[m]

[m]

Usability today?

© 2001 Anastassia Allamaki

21

