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Motivation

GUESS when the page will be referenced again

Problem with LRU:
o Makes decision based on too little info
o Cannot tell between frequent/infrequent refs on time
o System spends resources to keep useless stuff around
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Example Scenario 1

Relation CUSTOMER with 20,000 tuples
Clustered B-tree on CUST_ID, 20b/key

4K pages, 4000 bytes useful space

100 leaf pages

Many users

References L1, R1, L2, R2, L3, R3, ...
Probability to ref Li is .005, to ref Ri is .00005

[ Y o

o LRU?
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Example Scenario 2
o Relation R with 1,000,000 tuples
o A bunch of processes ref 5000 (0.5%) tuples

o A few batch processes do sequential scans

o LRU?
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Related Work

o Page pool tuning (l.e., domain separation)
o Needs constant recalibration
o Cannot handle locality (hot spot patterns)changes
o Hard to program
o Query execution plan analysis (hot set, DBMIN,
hint-passing approaches)
o Info from the query optimizer
o Works well when same plan rereferences
o DBMIN is best of the above
o But multiuser breaks it (optimizer can’t detect overlaps)
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Basic concepts

Idea: Take into account history: last K references
(Classic LRU: K=1 (LRU-1))

Parameters:

o Pages N={1,2,...,n}

o Reference string ry, ry, ..., I, ...

o r=p for page p at time t

o b, = probability that r+1=p

o Time between references of p: I, = 1/b,
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Algorithm

o Backward K-distance b,(p,K):
#refs from t back to the Kth most recent reference to p

o b(p.K) = e if Kth ref doesn't exist
o Algorithm:
Drop page p w/ max Backward K-distance b,(p,K)

o Ambiguous when infinite (use subsidiary policy, e.g., LRU)

o LRU-2 Is better that LRU-1 —Why? (I)
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Realistic problems

o Early page replacement
o Page b(p,K) is infinite, so drop
o Butwhat if it is a rare but “bursty” case?

o Page reference retained information
o For K>1- page may be gone / its information still around
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Correlated References

1. Intra-transaction
o E.g., read tuple/update tuple)
2. Transaction/Retry
o Rolled back and restarted
3. Intra—process
o Aprocess references page via 2 transactions
o E.g., update RIDs 1-10, commit, update RIDs 11-20
4. Inter-process
o Two processes reference the same page independently
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Addressing Correlation

o Problem: For example, assume (1) — read/update
o Algorithm sees p ( read)
o Drops it (infinite by(p,K)) (wrong)
o Sees it again (update)
o Keeps it around (wrong again)

o Should take into account only non-correlated refs
o But how do we know?
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Addressing Correlation (cont.)

o Solution: “Correlated Reference Period” by process
o No penalty or credit for refs within CRP
a l,: interval from end of one CRP to begin of the next

o How do we address (2) or (3)?
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Addressing Correlation (cont.)

o (1,3): CRP ends after end of this and the next Xtion
o (2): or when sure that the first Xtion has committed

o Messy — there may be more correlation cases

o Have DBA set CRP per each table
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Reference Retained Information

o Algorithm needs to keep info for pages that may not
be resident anymore, e.g.,
p is referenced and comes in for the first time
b(p.2) = infinity, p is dropped
p is referenced again
if no info on p is retained, p may be dropped again
o Page history information HIST(p) with <=2 refs to p
o Why not keep refs in page header?
o “Retained Information Period”
o Period after which we drop information about page p
o “Five minute rule” suggests RIP
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LRU-K Algorithm

If p is in the buffer { // update history of p
if LAST(p) > CRP {// uncorrelated reference
correl_period_of_p=LAST(p)-HIST(p,1)

fori=2 to K
HIST(p,))=HIST(p,i-1)+ correl_period_of_p
HIST(p,1)=t
}
LAST(p)=t

}
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LRU-K Algorithm (cont.)

else { // select replacement victim
min=t
for all pages q in buffer {
if (--LAST(q)>CRP // eligible for replacement
and HIST(q,K)<min) { // max Backward-K
victim=q
min=HIST(q,K)
}

if victim dirty write back before dropping
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LRU-K Algorithm (cont.)

fetch p into the victim’s buffer
if no HIST(p) exists {
allocate HIST(p)
for i=2 to K HIST(p,i)=0
}else{
for i=2 to K HIST(p,i)= HIST(p,i-1)
}
HIST(p,1)=t // last non-correlated reference
LAST(p)=t // last reference

}
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Two-pool Experiment

o Two disk page pools, N1=100 / N2=10,000 pages
o Models alternating index/record references

o Results
o LRU-1 needs 2-3 times bigger BP to reach LRU-2 hit rate
o LRU-2 really close to LRU-3 and optimal
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Single-pool / Random Access

o One disk page pool, N=1000 pages
o Zipf(a,b) distribution of reference frequences
(fraction a of references accesses fraction b of pages)

o Results
o LRU-2 still wins, although not by as much
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Real OLTP Workload

o Traces from bank OLTP Xtion references
o 470,000 page references, 20GB database
o Compared to LFU as well

o Results
o LRU-2 beats LRU-1
o LRU-2 also beats LFU (why?)
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Conclusions

[m]

LRU not good enough
LFU has limitations

Other algorithms
o too complex
o can't cope with change/multiple users

LRU-K works well
Really, LRU-2 is most beneficial

[m]

[m]

[m]

[m]

[m]

Usability today?
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